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Abstract

This paper develops a model to examine the dynamic process of health formation in older adults. Health

is modeled as a vector of latent components, each evolving according to a transition process that captures

dynamic complementarities among components and the influence of external factors, such as health invest-

ments and economic conditions. Considering an application that specifies health components related to

physical functioning, cognitive functioning, and mental health, we estimate the transition process utilizing a

comprehensive set of health measures from the Health and Retirement Study. The preliminary results find

positive dynamic complementarities between health components, with physical functioning showing strong

persistence and a significant impact on mental health. The study also examines the relation between the

latent health components and commonly used health measures, such as self-reported health indices and

objective health conditions.

1 Introduction

A well-established gradient exists between health and economic well-being near the end of working life and

into retirement, with causal relationships operating in both directions. However, the relative importance of
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the various mechanisms driving this relationship is less well understood. Health is a complex, dynamic, and

multidimensional concept whose implications for work, retirement, and disability policies vary considerably

depending on its manifestation. Furthermore, the estimated economic consequences of health are highly

sensitive to the methods used to measure and model it (French and Jones, 2017; Blundell et al., 2023).

Despite extensive research on the causes and consequences of health, there is still a lack of a unified consensus

on how to best measure and model it in economic studies.

In this paper, we develop a model of health formation that tractably captures the complexity across

conditions by disaggregating health into a sparse set of latent components. The framework combines a

large set of health measures, mapping them into a smaller and more interpretable set of health components.

Moreover, we model the dynamic interdependence among the components of health to identify both self-

and cross-complimentarities in shaping future health outcomes. In addition to dynamic complementarities,

the latent health components are also shaped by individual choices and economic conditions. We apply our

analysis to better understand the determinants of health formation and how health drives economic behaviors

near the end of working life. This approach yields valuable insights into the relationship between health and

employment decisions while also highlighting health-related disparities that may arise during retirement.

We select the health components ex ante to capture dimensions of health that are most relevant to

work capacity, which have garnered interest in both health and labor studies.1 The health components

are categorized into cognitive functioning, physical functioning, and mental health. Physical functioning

encompasses the ability to perform essential tasks in work and daily life, such as getting out of bed, walking,

and lifting objects. Similarly, cognitive functioning refers to capabilities related to attention, memory,

problem solving, planning, decision-making, and reasoning. Mental health, on the other hand, reflects an

individual’s emotional and psychological well-being, influencing how one thinks, feels, and handles stress.

Our choice of health components has an intuitive appeal. First, physical and cognitive health represent

two common dimensions of functional capacity with grounded connections to work and retirement decisions

(Blundell et al. (2023); Capatina and Keane (2023), and Millard (2025)). Second, there is an emerging

economic literature documenting the considerable consequences of mental health in the labor market (e.g.,

Wang et al. (2023)). Health deterioration in these dimensions can significantly affect work productivity,

financial management, and the navigation of complex medical treatment plans. Although recent research

has highlighted the economic consequences of mental health, there remains a critical gap in understanding

its endogenous formation, particularly in relation to the other health components and its interactions with

1Some recent examples of these studies include Cunha et al. (2010); Lise and Postel-Vinay (2020); Jolivet and Postel-Vinay
(2020); Guvenen et al. (2020); Blundell et al. (2023); Capatina and Keane (2023); Wen (2022); Millard (2025).
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economic behavior and circumstances.

We estimate our model using data from the Health and Retirement Study (HRS), which provides a rich set

of objective and subjective health measures, as well as other relevant variables, to inform our understanding

of one’s health and economic outcomes. We map a large number of health measures into the smaller set of

components and estimate technology parameters based on the joint distribution of the latent components

over time. The resulting structural parameters of the health formation process characterize the cross-

elasticities between health components, which measure the degree of complementarity across components

in the formation of health. In addition, the process considers the impact of employment, health-related

behaviors, and individual heterogeneity on the development of future health outcomes. We use the framework

to examine the relationships between health components and commonly used health measures, such as self-

reported health, and to analyze the implications for commonly studied outcomes, including employment and

mortality.

First, we document stylized facts about the dynamics of health measures, their covariance over age,

and their relationship to employment, retirement, and health outcomes (e.g., doctor-diagnosed conditions

and mortality). We find a positive correlation across all health measures that remains stable as people age.

Although physical and cognitive health measures deteriorate as people age, mental health measures improve.

Second, we estimate and analyze the technology governing the formation of physical, cognitive, and mental

health in old age. In the current state of the paper, we estimate a linear production technology. We identify

the effects of employment and health inputs, addressing the endogeneity of these choices using exclusion

restrictions that arise from a dynamic model of work, consumption, and health. The fully parameterized

model formalizes the causal relationship between the health components and the health investments. That

is, we measure the channels by which, for instance, physical health affects mental health and vice versa. For

example, physical health limits activities, resulting in a loss of enjoyment in life and purpose through work,

causing lower mental health. In contrast, the biological toll of persistently poor mental health can translate

into poor physical health and higher mortality rates (Case and Deaton, 2022; Ruhm, 2025).2

Our estimation results show significant dependence across the latent health components. Notably, physical

health is an important determinant for the development of mental health. Furthermore, our findings indicate

that lagged employment positively affects each latent health component, thereby slowing the rate of health

decline. This observation aligns with studies indicating that health deteriorates when individuals exit the

workforce (Fitzpatrick and Moore, 2018; Black et al., 2018). In contrast, deterioration of health components

2For instance, Ruhm (2025) shows that deteriorating mental health accounts for an estimated 9 % to 29 % of the rise in
mortality rates among prime-age Whites in recent years.
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reduces the probability of employment, with the largest effects from physical health. Declining mental

health also significantly lowers the probability of employment, emphasizing the importance of controlling for

mental health and its dependence on physical health when investigating the relationship between health and

economic outcomes at older ages.

Furthermore, our analysis provides insight into how objective health conditions and an individual’s self-

perceived health relate to latent health components. Notably, we observe that an individual’s overall health

perception arises from a combination of these latent health factors. While physical health is the primary

determinant of self-reported health, mental and cognitive health also significantly contribute. Decomposing

self-reported health into latent components enables us to identify more precisely which aspects of health

underlie results in studies that use self-reported measures to examine the relationship between health and

economic outcomes. For example, two individuals may assess their overall health similarly, yet one may have

low physical health and the other may experience poor mental health. As a result, the estimated effect of

self-reported health on employment will fall between the estimated effects of physical and mental health on

employment.

This paper makes several novel contributions to the related literature. We fit into a large literature

with the specific intention of understanding how individuals arrive at older ages with mental, cognitive, and

physical health and financial resources to support them throughout the rest of their lives.

Analyzing micro-level relationships between health and economic behavior is inherently complex due

to challenges in measuring health itself (for detailed discussions, see Currie and Madrian (1999); O’Donnell

et al. (2015); French and Jones (2017), and Blundell et al. (2023)). Our paper presents a comprehensive

representation of health that encompasses economically relevant characteristics, thus reducing the depen-

dence on narrow or singular health indicators. The health economics literature has long explored subjective

measures (e.g., Butler et al. (1987); Beńıtez-Silva et al. (2004); French (2005); Kreider and Pepper (2007);

Meyer and Mok (2019)), objective measures (e.g., Bartel and Taubman (1979); Bound (1989); Smith (2004)),

and their combinations (e.g., Stern (1989); Blundell et al. (2023)). As a result, the estimated effects of health

on employment and related outcomes vary across studies. Our framework accommodates both subjective

and objective measures, yielding a tractable and flexible representation of individual health.

Our approach aligns with economic literature that employs dynamic factor models to condense a

large number of measures into a more sparse and interpretable set of latent variables (Cunha et al., 2010;

Bound et al., 2010; Iskhakov, 2010; Poterba et al., 2017; Cunha et al., 2021), and Blundell et al. (2023)).

Numerous studies utilize unidimensional health indices to investigate health-related disparities, behaviors,
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or predictive outcomes (French (2005); Bound et al. (2010); Hosseini et al. (2022, 2021); Danesh et al.

(2024), and De Nardi et al. (2024)). However, such approaches often lack the nuance needed to capture

heterogeneity within health profiles. In contrast, our model utilizes a multidimensional representation in

which health components co-evolve dynamically. Our approach disentangles the roles of various health

domains, improving our understanding of the pathways through which health disparities evolve into broader

economic inequalities in older populations. Moreover, it sheds light on how specific health events, such as a

cancer diagnosis or the onset of diabetes, influence economic behavior through their relationship with latent,

multidimensional health states.

Our approach aligns with recent multidimensional frameworks (e.g., Conti et al. (2010); Amengual et al.

(2021); Wen (2022), and Cozzi et al. (2024)) but advances the literature by modeling health as an evolving,

richly-structured latent process. Our treatment of cognitive and physical health is most similar to Blundell

et al. (2023), who apply principal component analysis to summarize a similar set of HRS indices to recover

measures of latent physical and cognitive health. They focus on the effects of health on employment, treating

health as exogenous, while we focus on the endogenous formation of health. Moreover, they consider health

types, excluding mental health, in isolation, while we consider the effects of each component jointly.

This study addresses a notable gap in the economic literature concerning the determinants of health.

Much of the existing research in health and retirement treats health formation as exogenous to individual

decision making (French and Jones, 2017). This simplification is often justified on the grounds that, for

older individuals, who generally have established health histories, long-standing habits, and broad access to

public health insurance, health is largely predetermined. Moreover, studies that adopt this assumption often

report small behavioral effects (De Nardi et al., 2016). However, this assumption may be overly restrictive

for certain aspects of health, particularly mental health, which might be more sensitive to changing economic

conditions and individual choices. For instance, continued work beyond the traditional retirement age may

impose psychic costs that deteriorate mental health.

More similar to our framework are studies employing dynamic models of health, where health formation

depends on individual decisions and state variables (e.g., Grossman (1972); Gilleskie (1998); Yogo (2016);

Michaud and Wiczer (2018), and Strulik (2022)). We advance this line of research by allowing the influence of

economic factors on health to vary between its components and the interdependencies across the components.

For example, we model the response of mental health to the deterioration of physical health, thereby offering

a more comprehensive analysis of the interrelationships within an individual’s overall health. Additionally,

by modeling the cross-dependencies among health components, our framework mitigates an omitted variable
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bias present when estimating the effect of one of the components in isolation.

This study significantly enhances the understanding of the economic determinants and implications of

mental health. Previous research has examined the influence of health dynamics on economic inequalities

over the life cycle; however, the endogenous nature of mental health and its interactions with other health

dimensions are still not well understood. This work uniquely examines both the determinants and effects

of mental health within a unified framework, highlighting its pivotal role in late-life economic disparities.

Mental health is increasingly recognized as a critical factor that influences economic outcomes, particularly

in the labor market (e.g., Jolivet and Postel-Vinay (2020) and Biasi et al. (2021)). Our analysis complements

this perspective by investigating the economic environments that aggravate mental health challenges (e.g.,

Adhvaryu et al. (2019) and Frank and Glied (2023)). By explicitly modeling endogenous interactions between

mental health, physical health, and economic circumstances, our study uncovers mechanisms that have been

underexplored in the economics literature, shedding new light on how these dynamics jointly shape economic

and health trajectories in later life.

The remainder of the paper is structured as follows. Section 2 details the empirical estimation and

identification of the health formation process. Section 3 describes the data used for the analysis. Section 4

reviews the results and Section 5 concludes.

2 Estimating the Technology of Health Formation

This section describes the framework for estimating a process of health formation near the end of working

life. The health formation process described below is consistent with a standard dynamic model of health

and employment as outlined in Section D of the Appendix. At each age, t, health is represented as a vector

of stocks, xt = (xpt , x
c
t , x

mh
t )′, where each element corresponds to a different component of one’s health, such

as physical functioning or mental health. A lower stock of health in any given dimension corresponds to

“worse” health, for instance the presence of more severe physical limitations.

At first observation (t=0), individuals are endowed with an initial stock of health, x0 = (xp0, x
c
0, x

mh
0 )′.

Individuals are first observed at the age of fifty-five, and their health at that time is the product of all previous

behavior, early health shocks, and economic factors.3 Initial conditions depend on one’s latent heterogeneity,

b0 ∈ R, which summarizes the accumulation of factors that affect the formation of one’s health from birth

until the age at which they are first observed. Latent heterogeneity reflects the factors that have been shown

3As such, the initial endowment of health is the result of an unobserved formation process that occurs before the individual
is first observed in the data. This is the initial conditions problem as described by Heckman (1991) and Wooldridge (2005).
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to be important determinants in health formation throughout the life cycle, such as education, childhood

health, and socioeconomic status (Currie and Moretti, 2003; Case et al., 2005; Currie, 2009; Conti et al.,

2010; Currie et al., 2010; Case and Paxson, 2010; Lundborg et al., 2014; Almond et al., 2018; Adhvaryu

et al., 2019; De Nardi et al., 2024).

The stock of each distinct health component evolves dynamically according to a specified production

technology, which is a function of the previous period’s health stocks, health inputs, and labor market

decisions. With three dimensions of health, the system is described by state-space equations, where t

represents the discrete time index for the periods we model the health dynamics, t ∈ {1, ..., Ti}, and Ti is the

oldest age we observe an individual. The dynamic formation of each health component, xkt , is determined

by

xkt = ft(xt−1, It, Lt−1, η
k
t ). (1)

The function ft characterizes the health formation technology, revealing how the health of the previous

period and the decisions affect the current health stock. For each k ∈ {p, c,mh}, xkt is determined by

xt−1 = (xpt−1, x
c
t−1, x

mh
t−1)

′, capturing both self- and cross-dependencies in health formation across the latent

health components. We assume that only health stocks from the preceding period contribute to the formation

process, suggesting that prior shocks to any health component impact only the current period’s health

through the previous period.4

The transition process depends on a vector of observable health inputs/investments, It ∈ R
KI . Health

inputs encompass both healthy behaviors, such as exercise, and unhealthy behaviors, such as smoking.

Healthy behaviors represent deliberate choices made by individuals based on their current health status. We

model health investment decisions as a function of latent health and individual heterogeneity;

It = I(xt, b0, t, ϵ
I
t ), (2)

Similarly, health transitions depend on the previous period’s employment, Lt−1. On the one hand,

employment can negatively impact health, especially when individuals are subjected to physical stressors,

hazardous substances, or psychological pressures. On the other hand, the rate of health decline has been

4That is, serial dependence in health formation follows a first-order Markov process.
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found to increase when exiting the labor force (Black et al., 2018). We model employment as

Lt = L(xt, b0, t,Wt, ϵ
L
t ). (3)

The value of employment depends on the stocks of latent health, xt, age, and latent heterogeneity, b0.

Furthermore, additional controls, Wt, encompass observable yet unmodeled determinants of employment.

In this model, an initial conditions problem arises as xt depends on x0 through successive substitution for

xt−1 in Equation (1). Hence, there may be unobserved factors in ηkt (i.e., relevant for determining xt) that

are correlated with xt−1 through x0. Moreover, unobserved factors in ηkt may be correlated with individuals’

decisions: work (Lt−1) and health inputs (It).
5 Ignoring this dependence will introduce an omitted variable

problem and result in biased estimates of the parameters in Equation (1). To address this, we express the

unobservable factors in equation (1) as

ηkt = γkb0 + ukt , k ∈ {p, c,mh}, (4)

where b0 is latent individual heterogeneity and ukt = (upt , u
c
t , u

mh
t ) are assumed to be mutually independent

idiosyncratic shocks to health formation and are exogenous to all other variables in Equation (1). The

idea is that b0 summarizes the relevant factors that jointly affect initial conditions, individual’s choices, and

productivity of health formation, addressing the omitted variables problem.6

Finally, we examine how latent health stocks shape mortality risk. Mortality is modeled through a

hazard function that captures the probability an individual dies in period t (dit = 1) conditional on survival

up to t− 1 (dit−1 = 0), as

H(dt = 1|dt−1 = 0, xt, b0, t). (5)

From an economic perspective, worse health increases the risk of death, thereby shortening an individual’s

expected decision horizon. In our framework, this matters because the horizon over which individuals

expect to reap returns from investments (in education, work, or health itself) is endogenous to their health

trajectory. Distinguishing the role of different health components in driving mortality risk is thus essential

5These factors may be preferences for health or the productivity of health, such as education, SES, and SES in childhood.
6This identification argument follows from the solution to the theoretical life-cycle consumption and labor supply model

described in Section D of the Appendix. This model allows for latent heterogeneity in health formation, preferences, and
productivity, all of which may be correlated. It demonstrates that the dependence of health production with the optimal policy
functions for employment and health inputs, after controlling for other observable determinants of health formation.
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for understanding how health deterioration feeds back into economic behavior and choice.

Mortality is also of central policy relevance. It has direct welfare implications, underpins social

insurance programs, and drives public expenditures through pensions, health care, and disability insurance.

In dynamic models of health, mortality represents the absorbing state of health capital depreciation (à la

Grossman (1972)), making it a natural outcome to study when modeling health trajectories.

2.1 Measurement System

The primary challenge in estimating Equation (1) arises from the latent nature of the underlying health

components. Instead, we observe a set of imperfect measures of health. Our approach builds on a substantial

body of literature related to the estimation of production functions for latent skills and utilizes methodologies

to estimate dynamic factor models (Cunha et al., 2010, 2021; Del Bono et al., 2022; Agostinelli and Wiswall,

2025).

We assume that the measurement system has a dedicated factor structure so that, for each latent

health component, we have a set of measures that are generated exclusively by that component. For each

k ∈ {p, c,mh} and period t ∈ {0, ..., Ti}, we observe Mk noisy measures, zkt,m, m ∈ {1, ...,Mk} generated by

zkt,m = Zk
m(xkt , v

k
t,m)

where vkt,m is an i.i.d. measurement error. Further, we assume the parameters of the measurement system are

age-invariant (Agostinelli and Wiswall, 2025).7 Our data encompass three distinct types of measurements:

continuous, categorical, and binary.

1. For continuous measures, we adhere to the prevailing literature and assume a linear mapping. That

is,

zkt,m = µk
m + λkmx

k
t + vkt,m.

The measurement parameters µk
m and λkm indicate location and scale, respectively.

7The health measures are explicitly designed to be administered consistently across survey waves, allowing researchers to
track changes in health as individuals age. This design underlies the assumption that two individuals with the same underlying
health vector, but differing in age, will on average record the same measured health. Similar assumptions appear in related
work. For example, Bound et al. (2010) estimate a multi-indicator latent health factor and test whether factor loadings vary
with age. Their results cannot reject equality of loadings across ages 50–70, leading them to impose constant loadings and treat
the resulting health index as age-invariant.
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2. For categorical measures (ordered), we assume they are generated by

zkt,m = j iff τkm,j−1 < xkt + vkt,m ≤ τkm,j

where τkm,0 = −∞, τkm,J = ∞, and the remaining thresholds on the interior are to be estimated.

3. For binary measures, we assume they are generated by

zkt,m =

 1 iff zk∗t,m = xkt + vkt,m > τkm,

0 otherwise

where zk∗t,m is a latent index and µk
m is the threshold to be estimated.

Initial heterogeneity: We have a set of observed measures, zb0m , m ∈ {1, ...,M b0}, which we assume to

exclusively reflect latent initial heterogeneity, b0. These measures are based on individual characteristics

prior to model entry, including education and childhood health.

Supplementary measures: In certain model specifications, we include measures derived from a combina-

tion of all latent health components, encompassing both objective health conditions and self-reported health.

These measures may fall into one of the three types described earlier. A comprehensive description of the

complete set of health measures is provided in Section 3 below.

2.2 Implementation

In the current version of the paper, we specify a linear law of motion for each component of latent

health. Each component evolves over time as a function of other health components, latent heterogeneity,

and observed factors as

xkt+1 = ak0 + ak1x
p
t + ak2x

c
t + ak3x

mh
t + ak4b0 + ckI It + ckeLt + νkt , (6)

νkt ∼ iid N (0, σ2
νk), for all k ∈ {p, c,mh}. (7)
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The vector ckI ∈ R
KI captures the effect of health inputs, It, and c

e captures the effect of employment status

on health formation.8

We use a nonstructural approximating model for health input and employment policy functions. Health

input decisions, It, are choices made conditional on health. The decision regarding health input j ∈ KI is

modeled as

I∗jt = β
Ij
0 + β

Ij
1 x

p
t + β

Ij
2 x

c
t + β

Ij
3 x

mh
t + β

Ij
4 b0 + ν

Ij
t , (8)

ν
Ij
t ∼ iid N (0, σ2

νIj ),

Ijt = 1(I∗jt ≥ 0).

The latent value of healthy behavior j ∈ KI is I∗jt.

In a similar manner, we model the employment decision, Lt as

L∗
t = βL

0 + βL
1 x

p
t + βL

2 x
c
t + βL

3 x
mh
t + βL

4 t+ βL
5 Wt + βL

6 b0 + νet , (9)

νet ∼ iidN (0, σ2
νe),

Lt = 1(L∗
t ≥ 0),

where L∗
t reflects the latent value of employment. The control variables, Wt, include marital status, total

work experience at initial observation, and overall non-housing wealth as in Blundell et al. (2023). Further,

we assume that νkt , ν
Ij
t , and νet are mutually independent for all k ∈ R

3, j ∈ KI and over time.

For individuals that have survived to t− 1, the probability they die in period t (dt = 1) is determined

by a latent variable, d∗t , where

d∗t = βs
0 + βs

1x
p
t + βs

2x
c
t + βs

3x
mh
t + βs

4b0 + βs
5t+ ϵst , (10)

ϵst ∼ iid N (0, 1),

dit = 1{d∗t ≥ 0}.

As individuals are first observed at age 55 and substantial health dynamics occur prior to model entry,

we allow initial conditions to be jointly distributed. Let w0 = (xp0, x
c
0, x

mh
0 , b0)

′ denote the vector of initial

8The linear specification can be interpreted as the logarithm of a Cobb–Douglas production function. In particular, let
xt = ln(x̃t), where x̃t denotes the true latent stock. In this formulation, the observed measures are generated by the log of the
latent stocks, and the distributional assumptions are imposed on the logarithmic rather than the level representation of these
stocks.
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conditions. We assume w0 ∼ N(0,Σw), and the diagonal of the covariance matrix, Σw, is normalized to

unity,

Σw =



1 ρ12 ρ13 ρ1b

ρ12 1 ρ23 ρ2b

ρ13 ρ23 1 ρ3b

ρ1b ρ2b ρ3b 1


.

The vector of correlation coefficients, ρ = (ρ12, ρ13, ρ23, ρ1b, ρ2b, ρ3b)
′ characterizes the dependence among

initial health stocks and latent heterogeneity. This flexible structure captures the complex joint distribution

of health upon entry into the sample. The assumed distribution on w0 and Equation (6) imply that, for each

t ∈ {1, .., T}, the distribution of the latent health vector, xt, is

xt ∼ N (µxt ,Σxt).

The off-diagonal elements of Σxt
, capturing the covariance structure among the latent health components,

manifest from ρ and the parameters of Equation (6).

2.3 Identification of Linear Formation Technology

Identifying and estimating the technology function is challenging, as both inputs and outputs are only

observed through proxies. Inputs may be endogenous, and unobserved components in the input equations

may be correlated with unobservables in the technology function. To show identification of the model,

we impose additional restrictions on the measurement system that follow common practice in the related

literature (Cunha et al., 2021).

1. vkt,m are mean zero for all k ∈ {p, c,mh, b}, t ∈ {1, .., Ti}, and m ∈ {1, ...,Mk}. The variance of

measurement errors for discrete and categorical measures is normalized to one.

2. vkt,m is independent of (xpτ , x
c
τ , x

mh
τ , b0) for all t, τ ∈ {1, .., Ti}; m ∈ {1, ...,Mk}; and k ∈ {p, c,mh, b}.

3. vkt,m is independent of vlτ,n for all t, τ ∈ {1, .., Ti}, t ̸= τ ;m ∈ {1, ...,Mk}; and n ∈ {1, ...,M l} where

m ̸= n, and k ∈ {p, c,mh, b}.

4. vkt,m and vkt,n are allowed to freely covary for m,n ∈ {1, ...,Mk}.

Under these assumptions, at least three time periods and a single measure generated by each latent

12



health component is sufficient to identify the model’s parameters. The following describes the intuition for

identification. A step-by-step description of identification is provided in Section A of the Appendix.

First, the mean and variance of latent variables cannot be separately identified from the location

and scale of the measurement system without normalization. Normalizing the joint distribution of the

initial endowments, w0, sets location and scale, and all remaining parameters are identified relative to this

normalization.9 With this in place, the thresholds of discrete measures (τkm) and the location of continuous

measures (µk
m) can be recovered from the expected value of observed measures in the first period, E(zkm,1).

Identification of the remaining parameters has two main components. First, The latent health components

evolve according to Equation 6. If the latent states were observed, their law of motion could be estimated

directly from serial covariances of the states and controls (employment, health behaviors). But since the

states are unobserved, we must infer their covariance structure indirectly through the measurement system.

The key insight is that the covariance structure of the observed measures—both discrete and continuous—can

be written in terms of the underlying latent covariances and the measurement parameters. With only

continuous outcomes, this mapping is direct (see Cunha and Heckman (2008), Agostinelli and Wiswall

(2025)). With discrete measures, the mapping is more complex but conceptually the same: the observed

joint distribution reflects the latent serial covariances filtered through thresholds.

Crucially, with at least three periods of data, the model’s dynamics impose overidentifying restrictions.

The same transition process must explain not only movement from period 1 to period 2, but also from period

1 to period 3. This consistency requirement pins down the relative scale of discrete and continuous measures,

recovers the covariance structure of the initial endowments, and identifies the serial covariance of the latent

states. Intuitively, if the model explains transitions from period 1 to 2, it must also consistently explain

transitions to period 3, which forces scaling parameters and covariances into place.

Once the serial covariance structure of latent factors and scaling parameters of the measurement

system are in place, we can separately identify the effects from endogenous controls, latent factors, and

contemporaneous controls in sequence. Additionally, the covariances of latent states with observed inputs

clarify the distinction between initial heterogeneity and the influence of employment or health inputs. Finally,

intercepts are recovered from mean relationships once the loadings are known.

9Alternative approaches to normalization involves fixing some location and scale parameters of the measurement system, for
instance, in Cunha et al. (2010).

13



2.4 Estimation

We estimate the model using maximum simulated likelihood, which is particularly useful when the

likelihood involves high-dimensional integrals over latent states that cannot be computed in closed form.

In our model the observed-data likelihood involves integrating out the latent states {x1t , x2t , x3t , }t=1...T and

the latent heterogeneity, b0. Simulation replaces this difficult integral with an average over simulated draws

from the joint distribution of the latent states. We maximize the approximated log-likelihood with respect to

parameters θ using a combination of Nealder-Meade and the Broyden–Fletcher–Goldfarb–Shanno (BFGS)

algorithm. A detailed description of the likelihood is located in Section B of the Appendix. Further details

on the simulation and estimation steps are located in Section C of the Appendix.

3 Health and Retirement Study

We estimate the technology of health formation using the Health and Retirement Study (HRS). HRS is

a biennial panel survey of noninstutionalized individuals and their spouses living in the United States. HRS

includes an abundant set of measures of one’s health, along with variables related to income, demographics,

and other economic conditions. The HRS began in 1992, and respondents enter the survey between the ages

51-61. We focus on white male respondents aged 55 or 56 that are observed for at least two total periods.

We exclusively use waves 3-14 of the survey, as there are nontrivial differences in the questionnaire starting

in the third wave. Our sample is an unbalanced panel of 3,429 individuals (41,148 total observations).10

Next, we detail the various sets of variables used to measure health and to estimate the model.

Mental Health

Mental health is measured using a set of questions derived from the Center for Epidemiological Studies

Depression (CESD) scale. This scale is based on the sum of eight indicators. Six of these indicators are

“negative,” where respondents report “yes” or “no” to experiencing the following sentiments all or most of

the time: depression, everything is an effort, restless sleep, feeling alone, feeling sad, and not being able to get

going. The remaining two indicators are “positive,” where respondents report “yes” or “no” to experiencing

the following sentiments all or most of the time: feeling happy and enjoying life. The commonly applied

CESD scale is based on aggregating these responses, giving a score that ranges from 0 to 8, with higher

scores indicating worse mental health. In our framework, we treat each indicator separately.

10In ongoing work, we extend the model to account for mortality and address the selection bias related to omitting observations
that died before age 66.
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Cognitive Functioning

Cognitive functioning is measured using six cognitive health indices that are consistently collected in

all survey waves. These measures correspond to scores on tests administered to survey respondents and

self-reported functional limitations.

First, we use two measures of fluid intelligence (the capacity to think logically and solve problems in novel

situations, independent of acquired knowledge). Prior research suggests that fluid intelligence is strongly

associated with labor market outcomes (e.g., Heineck and Anger (2010)).11 To measure fluid intelligence,

respondents complete two standardized word recall tests: immediate and delayed word recall. The immediate

word recall score captures the number of words out of ten that are correctly recalled immediately after

presentation, while the delayed word recall score reflects the number of words recalled correctly following a

delay of approximately five minutes.

Second, we incorporate two measures derived from tests of basic arithmetic ability. The first is the serial

sevens test, in which respondents are asked to sequentially subtract 7 from 100 across five trials. Scores

range from 0 to 5, based on the number of correct subtractions. The second measure involves backward

counting, where respondents are instructed to count backward from 20 and from 86 for ten consecutive

numbers. Scoring is based on performance: a score of 2 is assigned if the respondent completes the task

correctly on the first attempt, 1 if correct on the second attempt, and 0 if unsuccessful in both attempts.

Finally, we include three subjective measures of functional limitations related to cognition. Respondents

are asked whether they have difficulty using a map and whether they have difficulty managing money.

Additionally, they self-report their memory on a five-point scale. These questions reflect everyday cognitive

functioning limitations that may not be fully captured by formal test scores.

Physical Functioning

Physical functioning is assessed using a set of functional limitation indices, each constructed by aggre-

gating responses to questions about difficulty performing specific everyday tasks. For each task, respondents

report whether they experience difficulty that is expected to last at least three months. Responses are coded

as 1 for difficulty and 0 for no difficulty. Each functional limitation index represents the sum of difficul-

ties within a group of tasks that involve similar types of physical functioning, with higher scores indicating

greater functional limitation.

11Fluid intelligence is distinguished from crystallized intelligence, which relies more on retrieving information from long-term
memory.
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Three indices are used to capture different areas of physical functioning: mobility, large muscle function,

and activities of daily living (ADLs). The mobility index includes five tasks: walking several blocks, walking

one block, walking across a room, climbing several flights of stairs, and climbing one flight of stairs. The

large muscle index includes four tasks: sitting for two hours, getting up from a chair, stooping, kneeling

or crouching, and pushing or pulling a large object. The ADL index includes five tasks: bathing, eating,

dressing, getting out of bed, and using the toilet.

Employment and Healthy Behaviors

We model the health transition process as a function of employment status. An indicator for whether an

individual is employed is derived from their reported labor force status, with individuals flagged as employed

if they report working either part time or full time.12

HRS respondents are surveyed on a set of questions regarding health-related behaviors. Respondents are

asked how often they engage in vigorous physical activity—such as aerobics, running, swimming, or bicycling.

Following common practice in the literature, individuals are flagged as engaging in regular exercise if they

report participating in such activities three or more times per week.

In addition, respondents are asked whether they consume alcohol, and if so, how frequently and how

many drinks they typically consume. They are also asked whether they smoke cigarettes. To capture these

behaviors as inputs in the health formation process, we construct indicator variables for engaging in regular

vigorous physical activity, drinking alcohol, and smoking status.

Measures of Latent Heterogeneity

Respondents enter the sample at age 55, meaning their initial observed health reflects a lifetime of prior

choices and experiences. These accumulated factors may influence both the formation of health and other

individual decisions, such as engagement in healthy behaviors or employment. Importantly, unobserved

characteristics—such as early-life socioeconomic status—may be jointly correlated with health outcomes

and behavioral choices. For instance, individuals from disadvantaged backgrounds may have received fewer

investments in health-promoting behaviors (e.g., regular exercise) or in the development of skills that enhance

workplace productivity.

12A respondent can give evidence of working, being retired, and disability alone or in combination with other statuses. If the
respondent is working full-time or part-time and there is no mention of retirement in the previous two years, they are considered
employed. Working 35+ hours per week, 36+ weeks per year is considered full-time. Less than this is considered part-time.
The hours and weeks from both the main and second job are considered in determining whether the respondent is working
full-time or part-time.
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To account for this, we construct an initial heterogeneity variable based on information collected prior to

age 55. This variable summarizes pre-existing individual differences at the start of the observation window

that are plausibly related to both subsequent health and employment trajectories (Currie and Moretti, 2003;

Case et al., 2005; Currie, 2009; Conti et al., 2010; Currie et al., 2010; Case and Paxson, 2010; Lundborg

et al., 2014; Almond et al., 2018; Adhvaryu et al., 2019). The pre-55 variables are used as observed measures

in a factor analytic framework to recover the initial heterogeneity, b0.

First, we include the respondent’s own education level and his mother’s education level. These variables

relate to the efficient producer hypothesis, which posits that more educated individuals are more efficient

at producing and maintaining health (Grossman, 1972). Second, we incorporate a measure of childhood

socioeconomic status (SES) based on the respondent’s self-reported assessment of their family’s financial

situation during childhood (categorized as “well off,” “about average,” or “poor”). This variable reflects

early-life resource constraints and social environment, consistent with the early-life adversity or health capital

frameworks, which emphasize the long-term effects of early deprivation.

We also include the respondent’s self-rated health at age 16 (reported on a five-point scale: excellent,

very good, good, fair, poor), which captures early-life health endowments that may shape later-life health

outcomes and labor market capacity.

Finally, we include indicators of early-life risk exposure, such as whether the respondent ever smoked

prior to age 50, and whether either parent used alcohol or drugs to an extent that caused problems in the

family. These variables proxy for exposure to adverse family environments and behavioral risk factors that

may have long-run impacts on both health and socioeconomic outcomes.

Additional Health Measures

Our model incorporates a set of additional health measures as functions of all the latent health

components. Including these measures enables us to examine how each latent health dimension relates to

commonly used indicators of health status. First, we include self-reported health, a widely used summary

measure in empirical research on health and its economic consequences. Self-reported health is a simple and

readily available measure of health that has been shown to be a strong predictor of mortality (Idler and

Benyamini, 1997), labor supply (Bound, 1989; Stern, 1989), as well as exhibiting a strong correlation with

other health measures.13. In our analysis, we use respondents’ self-rated health, measured on a five-point

categorical scale where “5” indicates excellent health.

13See White (2023) and Blundell et al. (2023) for further discussion on the use of self-reported health in economics
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Second, we incorporate a set of objective health indicators, capturing whether the respondent has ever

been diagnosed with high blood pressure, diabetes, cancer, lung disease, heart disease, stroke, psychiatric

problems, or arthritis. Linking these diagnoses to the latent health components reveals how specific conditions

manifest in the latent structure. The estimated factor loadings on these objective conditions indicate how

each latent health component maps onto particular diagnoses.

3.1 Descriptive Statistics of Health Measures

Figure 1: Mean of Standardized Health Measures by Age

Note: ages are gouped into two-year bins. That is, age group 1 is 65-66 year olds, age group 2 is 67-68 year olds, etc..

This section describes the dynamics of the observed health measures and their joint correlation structure.

To facilitate comparison, each measure is standardized and signed so that higher values indicate ”better”

health. Figure 1 displays the averages of physical health measures (left), cognitive health measures (center),

and mental health (right). Mental health is measured by aggregating over all CESD questions to construct

the CESD index.

Figure 1 illustrates the mean dynamic profile of physical and cognitive health, which are more typically

considered in related studies (Poterba et al. (2017); Hosseini et al. (2021); Capatina and Keane (2023)),

deteriorate with age. This deterioration has been used to explain health consequences for labor supply,

medical expenditures, early retirement, and other variables. In contrast, mental health improves over time.

An important empirical question arises regarding the extent to which this improvement in mental health is
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influenced by work and the degree to which mental health deterioration exacerbates the effects of declining

health in other dimensions on economic decisions.

Figure 2: Correlation of Physical and Cognitive Measures with Mental Health by Age

Figure 2 illustrates the relationship between physical and cognitive measures and mental health over

time. Mental health exhibits a positive correlation with both physical and cognitive health. Considering the

varying age profiles of physical, cognitive, and mental health, it can be inferred that a subset of individuals

experiencing declines in physical or cognitive health may also suffer from deteriorating mental health.

Figure 3: Mean of Objective Health Measures and Self-Reported Health by Age

Next, Figure 3 shows the average probability of self-reporting an objective health condition (left), and

the evolution of standardized self-reported health (right). Both measures, frequently examined in related

literature, demonstrate a similar age-trend as physical and cognitive measures. The probability of reporting

an objective health condition rises with age across all categories. Second, self-reported health tracks physical

measures closely.

The final set of descriptives examine the relationship between the health measures, employment, and

healthy behaviors. Table 1 presents correlations over age between the health measures and employment

(top row) and three health-related behaviors. Each measure is positively correlated with employment, with

the strongest associations arising for the physical health indicators, consistent with evidence linking health

to labor market outcomes (Bound, 1989; Currie and Madrian, 1999)Vigorous exercise is also positively
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Table 1: Descriptive correlations of health measures and labor outcomes

CESD
Self-Rated
Memory

Immediate
Word Recall

Delayed
Word Recall

Mobility
Large
Muscle

ADLS

Employment 0.147 0.164 0.151 0.133 0.281 0.259 0.193
Vigorous Exercise 0.059 0.061 0.056 0.049 0.092 0.088 0.045
Smokes -0.118 -0.049 -0.068 -0.062 -0.079 -0.063 -0.060
Drinks 0.140 0.126 0.132 0.124 0.212 0.189 0.120

correlated with the health measures, whereas smoking is negatively correlated, in line with prior work on

risky health behaviors (Hai and Heckman, 2022). Interestingly, drinking shows a positive correlation with

the health measures, consistent with earlier findings that moderate alcohol use can be positively associated

with health and labor market outcomes (Mullahy and Sindelar, 1996).

4 Estimation Results

Table 2: Model Estimates: Covariance Matrix of Initial Endowments

xc0 xmh
0 xp0 b0

xc0 1.000 0.336 0.408 0.678
(0.026) (0.035) (0.047)

xmh
0 1.000 0.654 0.393

(0.023) (0.023)
xp0 1.000 0.458

(0.022)
b0 1.000

Note: Standard errors presented in parentheses below point estimates.

This section reviews the estimated parameters of the health formation process. Table 2 presents the

covariance matrix of the latent health components at t = 0, (xc0, x
mh
0 , xp0), along with individual heterogeneity,

b0. The endowments of the three health components have positive correlations, with the strongest association

between physical and mental health. Moreover, initial heterogeneity positively correlates with each health

component, indicating that individuals with higher endowments of b0 tend to exhibit better health outcomes.

Table 3 presents the conditional mean of b0 across various realizations of its measures, offering intuition

to the sorts of characteristics this variable captures. Initial heterogeneity is measured by retrospective char-

acteristics of the individual and their parents. First, b0 has a positive correlation with both the individual’s
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Table 3: Conditional Mean of Latent Heterogeneity, b0

Education
Mother’s
Education

SES

None -0.92 None -0.55 Poor -0.76
Above Bachelors 1.12 College + 1.13 Rich 1.31

Self Reported
Health in Childhood

Ever-Smoked
Parents

Drink/ Drug

Poor -1.53 No 0.67 No 0.30
Excellent 0.55 Yes -0.48 Yes -0.94

and their mother’s education levels, as well as with childhood socio-economic status and self-reported health

during childhood. Additionally, b0 is lower among individuals who have smoked before the age of 55 and

among those whose parents engaged in excessive drinking or drug use.

These patterns support the efficient-producer hypothesis (Grossman, 1972), which asserts that early

investments in human capital, encompassing both personal and parental investments, improve the efficiency

of health production in later life. Furthermore, they align with findings on the long-term health consequences

related to adverse childhood environments and risky adolescent behaviors (Case and Paxson, 2010; Conti

et al., 2010).

Table 4 presents the estimates of the transition process. The columns distinguish estimates for

cognitive, mental-health, and physical-health, respectively. The first row details the time trend, indicating

that cognitive and physical health decline with age, while the rate of decline in mental health is significantly

smaller in magnitude. Rows 2–4 capture both own-lag and cross-lag effects. As indicated on the diagonal,

each component displays persistence, with the most pronounced persistence observed in physical health.

Furthermore, physical health has the largest cross-effect on mental health, highlighting its crucial role as

a precondition for mental well-being. Mental health is also an important determinant of physical health.

The effect of b0 on health formation is displayed in Row 5. Latent heterogeneity positively affects health

formation for all components. This finding indicates that certain demographic groups, such as individuals

with higher education, improved socioeconomic status during upbringing, or better self-reported health in

childhood, experience a slower rate of health decline in older age.

Next, we consider the effect of the lagged employment on health formation. Having worked in the previous

period raises subsequent health in all three domains. This is consistent with the finding in related studies
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Table 4: Model Estimates: Health Formation Process

xct xmh
t xpt

Intercept -0.200 -0.052 -0.202
(0.005) (0.007) (0.005)

xct−1 0.294 0.088 0.080
(0.005) (0.006) (0.006)

xmh
t−1 0.008 0.225 0.269

(0.001) (0.008) (0.007)
xpt−1 0.039 0.287 0.522

(0.003) (0.006) (0.008)

b0 0.198 0.188 0.134
(0.005) (0.013) (0.011)

Lt−1 0.120 0.028 0.274
(0.008) (0.004) (0.011)

Drink 0.199 0.230 0.022
(0.009) (0.011) (0.007)

Smoke -0.173 -0.134 -0.025
(0.011) (0.01) (0.017)

Exercise -0.111 -0.107 0.397
(0.013) (0.017) (0.01)

Note: Standard errors presented in parentheses below point estimates.

that health is negatively affected by labor market exit into retirement or disability insurance (Fitzpatrick

and Moore, 2018; Black et al., 2018). Employment has the greatest impact on the preservation of physical

health, and its effect on mental health is an order of magnitude smaller.

Rows 6-8 provide estimates of the effects of healthy behaviors. Smoking is found to significantly

diminish all health stocks, with the most substantial impact on cognitive health. Conversely, vigorous

exercise enhances physical health, but is negatively related to cognitive and mental health. Interestingly,

alcohol consumption appears to have a positive effect on health formation. This phenomenon may stem from

the use of a binary indicator for “any drinking.” Future work will consider both the extensive and intensive

margins of drinking.

4.0.1 Effects of health on employment, mortality, and healthy behaviors.

Despite the extensive literature on the effects of health on employment, a lack of consensus on the

magnitude of these effects and the specific dimensions of health most predictive of particular outcomes
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remains. This lack of consensus may, in part, arise from the variety of empirical methodologies and datasets

utilized to evaluate these effects. Table 5 presents estimates of employment determinants, illustrating the

relative impacts of various health components. Improved health correlates positively with an increased

probability of employment across all components. Importantly, physical health exerts the largest significant

effect on employment, while the effects of cognitive and mental health are smaller, although still statistically

significant. These estimates corroborate the findings in Blundell et al. (2023), who show that cognition has

modest effects on employment when also accounting for health. These findings lend support to the use of

physical health measures as the primary indicators for analyzing of the effects of health on employment.

However, Table 4 indicates mental health to be an important determinant of physical health. Ignoring

the relationship between health components can result in potentially bias estimates of healths employment

effects.

Table 5: Model Estimates: Employment, Mortality, and Healthy Behaviors

Lt Ht Drink Smoke
Vigorous
Activity

Intercept -0.022 -2.484 -0.417 -0.913 -1.102
(0.002) (0.042) (0.015) (0.022) (0.02)

xct 0.015 0.431 0.172 -0.025 0.049
(0.001) (0.034) (0.011) (0.003) (0.005)

xmh
t 0.035 -0.545 0.109 -0.194 -0.140

(0.005) (0.036) (0.015) (0.01) (0.015)
xpt 0.191 -0.145 0.204 -0.006 0.151

(0.01) (0.014) (0.012) (0.004) (0.013)
b0 0.135 0.008 -0.010 -0.040 -0.053

(0.01) (0.003) (0.000) (0.007) (0.005)
Age -0.292 0.004

(0.002) (0.001)
wealth -0.025

(1.481)
experience 0.048

(0.117)
married -0.014

(0.365)

Note: Standard errors presented in parentheses below point estimates.

Next, we examine mortality, a crucial element in an individual’s decision-making process, as it determines

the expected decision horizon when making choices. For example, a decline in health that raises mortality

risk may prompt individuals to reassess their employment decisions in light of a shortened expected lifespan.
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The second column of Table 5 illustrates that the probability of mortality increases with age. Additionally,

individuals in poorer physical and mental health exhibit a higher likelihood of mortality. Surprisingly,

cognitive health positively affects the likelihood of mortality.

Finally, we investigate the predictive relationship between latent health components and individual health

behaviors. Individuals exhibiting good health across all latent dimensions are more inclined to engage in

moderate drinking and less inclined to smoke. Better physical and cognitive health increases the likelihood

of participation in vigorous exercise. Interestingly, mental health negatively affects the likelihood of engaging

in vigorous physical activity.

4.1 Additional Results: Objective Health Measures and Self-Reported Health

This final results examines a version of the model that includes additional objective health conditions, such

as binary measures indicating if the respondent has cancer or diabetes, and a respondent’s self-assessment of

their overall health, measured on a scale of five. Each additional health measure is modeled as a function of

all latent health stocks. The estimated parameters reveal the extent to which each latent health component

relates to both objective health conditions and self-reported health. In other words, for objective health

conditions, we estimate how each condition manifests itself in terms of the latent stocks. For self-reported

health, we estimate how each latent health component determines an individual’s self-perception of their

overall health.

Table 6: Objective Health Conditions

High Blood
Pressure

Diabetes Cancer
Lung
Disease

Heart
Problem

Stroke
Psychological

Problem
Arthritis

Intercept -0.423 -1.379 -1.414 -1.686 -1.460 -2.410 -0.788 -0.013
(0.017) (0.022) (0.021) (0.04) (0.025) (0.051) (0.02) (0.024)

xc -0.134 -0.365 0.021 -0.147 -0.011 -0.198 -0.087 0.257
(0.033) (0.049) (0.04) (0.069) (0.043) (0.079) (0.041) (0.052)

xmh -0.130 -0.313 0.000 -0.207 -0.156 -0.237 -0.484 0.193
(0.051) (0.055) (0.087) (0.059) (0.05) (0.102) (0.05) (0.042)

xp -0.405 -0.235 -0.131 -0.607 -0.514 -0.423 -0.509 -1.160
(0.049) (0.046) (0.099) (0.051) (0.046) (0.068) (0.045) (0.029)

Age 0.077 0.054 0.053 0.033 0.069 0.062 -0.014 0.061
(0.003) (0.004) (0.004) (0.006) (0.004) (0.007) (0.004) (0.004)

Note: Standard errors presented in parentheses below point estimates.

Table 6 presents the estimated loadings for the objective health measures. Each dependent variable is
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coded as one if the respondent reports receiving a doctor’s diagnosis of the condition, and zero otherwise.

The model for each condition controls for age.Several notable patterns emerge in these estimates. First,

the probability of all health conditions increases with age, with the exception of psychological problems.

Physical health tends to be the most important correlate of all objective health conditions, with the exception

of diabetes. Mental health tends to be more closely related to the objective health conditions relative to

cognitive health, with the exception of diabetes and high blood pressure. Arthritis is strongly associated

with poor physical health, confirming the close link between arthritis and physical limitations. However,

surprisingly, arthritis is positively associated with cognitive and mental health. While psychological issues

correlate with poor mental health (-0.484), they demonstrate a stronger relationship with physical health

than with cognitive health, which is counterintuitive. Heart problems are closely linked to poor physical and

mental health. Conversely, cancer does not display a significant association with cognitive or mental health,

whereas lung disease and stroke are strongly associated with all three latent health components.

Table 7: Results: Self-Reported Health

Self-Reported Health

xc 0.473
(0.028)

xmh 0.555
(0.037)

xp 0.625
(0.03)

Age 0.013
(0.003)

Note: Standard errors presented in parentheses below point estimates.

Last, in Table 7, we examine the relationship between latent health components and self-reported health.

The loading associated with physical health is larger than that of cognitive and mental health, indicating

that respondents tend to prioritize somatic limitations in their overall health assessments. Nonetheless, all

components significantly influence self-reported health, indicating that individuals with varying perceptions

of latent health components may still self-report a comparable overall rating of their health. Self-reported

health is frequently utilized in applied research, partly due to its accessibility and standardized measurement

across various micro-datasets (French, 2005; Capatina, 2015; De Nardi et al., 2024). Furthermore, numerous

studies show that it correlates strongly with other health measures and predicts future mortality, even when

controlling for various factors (Pijoan-Mas and Ŕıos-Rull, 2014). However, aggregating health components
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can obscure the mechanisms by which health affects economic behavior. This is illustrated in Table 5,

where the probability of employment differs across latent health dimensions. These findings underscore the

necessity for further investigation into the causes and consequences of health dimensions, which remains the

primary objective of this working paper. Such analysis is essential for predicting the distributional effects of

policy changes, such as alterations to the retirement age, and for developing more targeted interventions to

address health-related inequalities.

5 Conclusion

This research investigates the formation and dynamics of health in older adults, focusing on the

interplay among physical, cognitive, and mental health components. We develop and estimate a model

using data from the Health and Retirement Study to understand how these health dimensions evolve over

time and influence economic behaviors, such as employment and retirement decisions. Our key findings

suggest positive dynamic complementarities between health components, with physical functioning showing

strong persistence and a significant impact on mental health. The study also examines how latent health

components relate to commonly used health measures and predict outcomes like medical expenditures in

retirement.

At its current stage, this paper lays the groundwork for a deeper understanding of health formation and

its role in shaping health-related economic inequalities at older ages. Ongoing development of this research

builds on three main areas. First, we are relaxing distributional assumptions on the health components,

independence assumptions on unobservables, and functional form assumptions within the formation process,

to better capture the underlying structure of health dynamics. Second, given the credible identification of

how economic factors affect health, we are working to strengthen the other causal direction; how health

affects economic outcomes and other commonly used measures, notable self-reported health. While the

current analysis is largely descriptive, advancing this causal link will enhance the interpretability of both the

latent health measures and their implications. Finally, we aim to incorporate the estimated health formation

technology into the theoretical model presented in Section 2. This will structurally link health dynamics with

economic behavior and enable counterfactual policy analyses, such as evaluating the impacts of retirement

age reforms.
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Appendix to “Estimating the Process of Health Formation in Older

Adults: The Roles of Physical Functioning, Cognition, and Mental

Health.” by Robert Millard and Steven Stern

A Identification

Given the assumptions outlined in the main text, a single measure for each latent factor, along with

t ≥ 3 periods, is sufficient to identify the model parameters. In this context, consider representing the model

such that Xt ∈ R
3 are the latent health components, Wt ∈ R

k are observable inputs to the production

technology, such as employment, and Ut are additional control variables, such as age. For now, suppose that

b0 is observed and contained in Ut. We show how the parameters associated with b0 are recovered at the

end. With this, the model can be written as

Xt = a+BXt−1 + C1Wt−1 + C2Ut + et, (11)

Wt = D1Xt +D2Ut + νt, (12)

where et ∼ iidN (0,Σe) represents the unobservable component of the production function, and νt ∼

iidN (0,Σν) denotes the unobservable determinants ofWt. We assume that et is independent of (X1, {νs}s=1,..,Ti
)

and νt is independent of (X1, {es}s=1,...Ti).

We do not directly observe Xt. Instead, we observe a single noisy measurement for each of it’s

components. These measurements can be categorized into two types: continuous measures associated with

the factors, and binary measures modeled through a probit link. For notational clarity, we denote j, r ∈ B

as the index for the x’s measured by binary indicators, and i, l ∈ C as the index for the x’s measured by

continuous indicators. We define the set of binary measures as B and the set of continuous measures as C,

with |C| ≥ 1 and |B| ≥ 1 to ensure we have at least one of each type.

� For xit we observe zit = µi + λixit + vit, where v
i
t ∼ iidN(0, σ2

vi), i ∈ C,

� For xjt we observe zjt = 1{xjt + vjt > τ}, where vjt ∼ iidN(0, 1), j ∈ B.

� vit and v
j
s are assumed independent for all i ∈ C, j ∈ B, and for all t, s = 1, ..., Ti. Moreover, vit and v

j
t

are independent of νs, for all t, s = 1, .., T
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� We denote the covariance matrix of measurement errors as Σv, which is a diagonal matrix, whose

elements corresponding to the variance of discrete measures is one.

First, the control variables shift the means only and we can transform the model to partial out Ut. The

data moments (variances, covariances, etc.) used to identify the model parameters are computed conditional

on the relevant control variables, Ust = (Us, ..., Ut). The coefficients for Ut, C2, D2, are recovered following

identification of the other model parameters. We transform Xt and Wt as follows,

W c
t =Wt − E(Wt|Ut)

= D1X
c
t + νt,

Xc
t = Xt − E(Xt|Ut)

= BXc
t−1 + C1W

c
t−1 + et. (13)

We can simplify the model further though substitution of W c
t−1 into Equation (13) to obtain

Xc
t = a+B∗Xc

t−1 + ut,

B∗ = (B + C1D1),

ut = C1νt−1 + et ∼ N(0,Σu).

Define Σt = var(Xt|Ut) and we normalize Σ1(i, i) = 1, for i = 1, .., 3, as in the main text. The off-diagonal

elements of Σ1, which represent the covariance of the initial latent factors, are parameters to be identified.

Additionally, we define the conditional population moments for the serial covariance of Xt as

Γt,s ≡ cov(Xc
t , X

c
t−1| Uts),

With equation (11) we can write the serial covariance matrices in terms of the model parameters,

Γt,t−1 = B∗Σt−1 (14)

Γt,1 = B∗Γt−1,1 (15)

Σt = B∗Σt−1B
∗′ +Σe. (16)

With these preliminaries, identification of the model is outlined in subsequent steps. The parameters

33



to identify are the coefficients in Equations 11, {a,B,C1, C2, D1, D2}, the parameters of the measurement

system, {λ, µ, τ,Σv}, the distributional parameters for the latent variables, {Σt,Γt,s,Σu,Σe}, and the corre-

lation structure of initial endowments, Σ1.

1. First, we can characterize the elements of serial covariances Γt,t−1 in terms of parameters and observed

data. The elements of Γt,t−1 take one of three functional forms depending on the types of measures

for the respective elements of Xt. Then we use the dynamics of Equation (11) to write parameters in

terms of observables only.

(a) Discrete Measure Moments: For each discrete measure, j, define var(xjt + vjt|Ut) ≡ sjt =√
var(xjt |Ut) + 1.14 Note that sjt is a function of Ut and can be written as sjt (Ut), but we keep this

dependence implicit for notational convenience. For each j, we derive a standardized conditional

index as

V j
t =

xjt − E(xjt |Ut) + vjt

sjt
, V j

t ∼ N(0, 1).

Then, the discrete measures can be expressed as zjt = 1{V j
t > kjt }, where k

j
t =

τj−E(xj
t |Ut)

sjt
is

the conditional standardized threshold. We identify kjt , ∀j ∈ B, t = 1, ..., Ti from the conditional

expectation of zjt :

E(xjt |Ut) = P (zjt = 1|Ut)

= 1− Φ(kjt )

⇒ k̂jt = Φ−1
(
1− P (zjt = 1|Ut)

)
.

where Φ is the standard normal CDF. Similarly, we identify τ j , ∀j ∈ B from zj1 given the

normalization imposed in the first period, τ̂ j =
√
2k̂j1.

Next, we recover the conditional tetrachoric correlations using the conditional binary-binary

joint probabilities across time.15 For any two time periods t ̸= s, (V j
t , V

j
s ) is bivariate standard

14Note that var(vjt |Ut) = var(vjt ) = 1 and E(vjt |Ut) = E(vjt ) = 0.
15The tetrachoric correlation is a statistical method used to estimate the correlation between two dichotomous (binary)

variables that are assumed to be derived from an underlying continuous and normally distributed latent variable. Essentially,
it estimates what the correlation would be if the variables were measured on a continuous scale rather than being artificially
categorized.
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normal with

ρtsj = corr(V j
t , V

j
s | Uts)

=
cov(xjt , x

j
s| Uts)

sjts
j
s

.

To pin down ρtsj , consider the joint probability

P (zjt = 1, zjs = 1| Uts) = P (V j
t > kjt , V

j
s > kjs|Uts)

= 1− Φ(kjt )− Φ(kjs) + Φ2(k
j
t , k

j
s; ρ

ts
j ),

where Φ2 is a bivariate standard normal CDF with correlation ρtsj . The LHS of this equation is

observed, and the RHS is a strictly increasing function in ρtsj for any fixed k̂jt , k̂
j
s (which are iden-

tified from above). Hence, we can rearrange and invert Φ2 to identify the tetrachoric correlation

coefficient,

ρ̂tsj = Φ−1
2

(
P (zjt = 1, zjs = 1| Uts)− 1 + Φ(k̂jt ) + Φ(k̂js); k̂

j
t , k̂

j
s

)
,

Doing this for all (t, s), t ̸= s pairs identifies the entire correlation matrix for the standardized

indices, V j
t =

xj
t−E(xj

t |Ut)+vj
t

sjt
. Because vjt are independent across time and from states, the latent

covariances satisfy

cov(xjt , x
j
s| Uts) = ρ̂tsj s

j
ts

j
s.

Hence, cov(xjt , x
j
s| Uts) is identified up to scale of sjt , s

j
s, for all t, s ∈ {1, ..., Ti}, t ̸= s and j ∈ B.

(b) Mixed measure moments: From the mixed-type measure moments, cov(zit, z
j
s), we have the

following probit identity

M ij
t,s ≡

sjs

ϕ(k̂js)
cov(zit, z

j
s | Uts) = cov(xit, x

j
s| Uts)λ

i

⇒ cov(xit, x
j
s| Uts) =M ij

t,s/λ
i.

Hence, the entire conditional cross-covariance block between xit and x
j
s is revealed up to scale, λi

and sjs.
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(c) Continuous measure moments: For t ̸= s, we have

cov(xit, x
i
s| Uts) = cov(zit, z

i
s| Uts)/(λ

i)2,

var(xit|Ut) =
(
var(zit|Ut)− σ2

vi

)
/(λi)2,

where var(vit) = σ2
vi , ∀t. Hence, cov(xit, x

i
s| Uts) are known up to scale, (λi)2, for all t, s ∈ {1, .., Ti}

and i ∈ C.

2. Consider the first three periods. With the covariance structure of observed measures characterized in

terms of the covariance structure of latent health components, the model’s imposed dynamic structure

solves for (λ, s2, s3,Σ1), where λ = {λi}i∈C , s2 = {sj2}j∈B, and s3 = {sj3}j∈B. For any t ̸= s, the

elements of Γt,s = cov(Xt, Xs| Ust) are as follows.

� If xjt and xrs are observed by binary measures, then

Γts(j, r) = ρtsj s
j
ts

r
s.

� If xit is observed by a continuous measure and xjs is observed by a binary measure, then

Γts(i, j) =M ij
ts/λ

i.

� If xit and x
l
s are observed by continuous measures, then

Γts(i, l) = cov(zit, z
l
s| Uts)/(λ

iλl).

Consider the two cross-lag anchor matrices, Γ21 and Γ31, where period 1 serves as the anchor. The

previous step expresses Γ21 and Γ31 as explicit functions of the unknown parameters, (λ, s2, s3,Σ1),

and observables only. Using Equation (14), we have

Γ2,1 = B∗Σ1

⇒ B∗ = Γ21Σ
−1
1 .
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Hence, B∗ is an explicit matrix function of (λ, s2,Σ1),

B∗(λ, s2,Σ1

)
= Γ21

(
λ, s2

)
Σ−1

1 .

Using Equation (15), and substituting yields

Γ31

(
λ, s3

)
= B∗(λ, s2,Σ1

)
Γ21

(
λ, s2

)
.

With four latent states and |C| ≥ 1, this gives us 9 scalar equations to solve for at most 3+4+1=8

parameters.16 Everything else on both sides of the equations is observable or already expressed in

terms of the parameters. Thus we identify (λ̂, ŝ2, ŝ3, Σ̂1), and subsequently identify B∗.

Intuitively, we compute B∗ from period 1-2 cross-covariances of measures. Then Γ31 = B∗Γ21 insists

the same B∗ must also propagate period 1-3 via period 2. Equating both ways to do the propagation

pins down the scalar parameters.

3. Given (λ̂, ŝ2, ŝ3, Σ̂1), we can recover Σ2, Σ3 and Σu. First the off-diagonal elements of Σ2 are

cov(xj2, x
r
2|U2) = ρ̂22jr ŝ

j
2ŝ

r
2

cov(xi2, x
j
2|U2) =M ij

22/λ̂
i

cov(xi2, x
l
2|U2) = cov(zi2, z

l
2|U2)/λ̂

iλ̂l

For the diagonal elements of Σ2 that correspond to discrete measures,

var(xj2|U2) = (ŝj2)
2 − 1.

for the diagonal elements of Σ2 that correspond to continuous measures,

Γ32 = B̂∗Σ2,

16Each continuous measure is associated with one parameter, λi, and each discrete measure is associated with has two
parameters, (sj2, s

j
3). Moreover, there are three correlation coefficients to be identified in Σ1. Hence, with at least one measure

of each type, we have at most 8 parameters to identify with nine equations.
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where the second column/row from

cov(xi3, x
l
2| U23) = (B̂∗Σ2)i,l

= cov(zi3, z
l
2| U23)/λ̂

iλ̂l.

Given Σ̂2, we recover Σu using relation (16),

Σ̂u = Σ̂2 − B̂∗Σ̂1B̂
∗′.

Similarly, we recover Σ3 from

Σ̂3 = B̂∗Σ̂2B̂
∗′ + Σ̂u.

Continuing in this fashion identifies Σt for all t > 3.

4. Next, we separately identify the components of B∗ (B,C1, and D1) and Σu (Σe and Σν) using the serial

covariances between Xt and Ws. Using equation (11) we can then write these moments as functions

of the parameters to identify. In the first two periods we have,

cov(W2, X1| U12) = D1(B + C1D1)Σ1 = D1B
⋆Σ1, (17)

cov(X2,W1| U12) = (B + C1D1)Σ1D
′
1 + C1Σν = B⋆Σ1D

′
1 + C1Σν , (18)

var(W1| U1) = D1Σ1D
′
1 +Σν . (19)

Given (λ̂, ŝ2, ŝ3), these moments pin down the remaining model parameters in sequence.17

D̂1 = cov(W2, X1| U12)(B̂
∗Σ̂1)

−1,

Σ̂ν = var(W1|U1)− D̂1Σ̂1D̂
′
1,

Ĉ1 =
(
cov(X2,W1| U12)− B̂∗Σ̂1D̂

′
1

)
Σ̂ν

−1
.

Then, we can identify B (separate from C1 and D1) as B = B̂∗ − Ĉ1D̂1. Further we can identify Σe

17Note that given, (λ̂, ŝ2, ŝ3), cov(W2, X1| U12), cov(X2,W1| U12), var(W1| U12) can be written in terms of data only.
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using

Σ2 = B∗Σ1B
∗′ +Σu

= B∗Σ1B
∗′ + CΣνC

′
1 +Σe

⇒ Σ̂e = Σ̂2 − B̂∗Σ̂1B̂
∗′ + Ĉ1Σ̂νĈ

′
1

5. To identify the contemporaneous effects of control variables, Ut, (C2, D2). First, distinguish those

that do and do not vary over time. For those that deterministically vary over time (i.e., age), we can

back out it’s coefficient from how the average path of the latent state shifts with age, relative to what

dynamics B,C1 would predict absent age. A similar argument holds for the Wt equation.

For time-fixed control vars, their effects are identified off cross-sectional convariation across time.

For instance, suppose b0 is observed, then we take covariances of the state/input equations with b0.

cov(Xt, b0) = Bcov(Xt−1, b0) + C1cov(Wt−1, b0) + C
(b0)
2 V ar(b0) (20)

cov(Wt, b0) = D1cov(Xt, b0) +D
(b0)
2 var(b0) (21)

using exogeneity of b0 to (et, νt). With B,C1, D1 already identified in earlier steps, these linear rela-

tionships pin down C
(b0)
2 and D

(b0)
2 from observed {cov(Xt, b0), cov(Wt, b0)}.

Now, if b0 is latent (measured with its own noisy indicators), we use the dedicated ”b0” block. Normalize

b0 in period 1, as in the main text. Then use co-variation of the b0 measures with the x0 measures to

get initial correlations. And use co-variation with xt and with Wt to recover contemporaneous effects.

6. Lastly, we recover the intercepts from Equation (11). Once λ̂i and τ̂ i are known, we compute E(Xt|U)

from the expected value of measurements. Then we have,

E(Xt|Ut) = a+BE(Xt|Ut) + C1E(Wt−1|Ut) + C2Ut (22)

and can solve linearly for a.
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B Estimation Details

The likelihood function is constructed from the joint distribution of initial heterogeneity, the latent

health components, and the observed measures of health inputs and employment over t. Define the parameter

vector as

θ = (ρ, {ak, Ck}k∈{p,c,mh}, σve , σνk , θm, g, βs, βL, βI), (23)

which collects all relevant measurement and transition parameters, where

ak = (ak0 , ..., a
k
4)

′,

Ck = (ck1 , ..., c
k
KI
, cke)

′,

βL = (βL
1 , ..., β

L
5 )

′,

βI = (βI
1 , ..., β

I
5)

′,

βs = (βs
0, ..., β

s
5)

′,

θm = {µk
m, λ

k
m, τ

k
j,m, σvk

m
}k∈{p,c,mh},m∈1,...,Mk

Let zt = (zpt,1, ..., z
p
Mp , zmh

t,1 , ..., z
mh
Mmh , z

c
t,1, ..., z

c
Mc) denote the vector of all health measures observed at time

t. Moreover, we observe employment status, Lt, and the vector of health investments, It. The joint density

of observed health measures at time t, given latent health components, xt = (xpt , x
mh
t , xct), and θ is

f(zt|xkt , θ) =
∏

k∈{p,mh,c}

Mk∏
m=1

fzk
t,m

(zkt,m|xkt , θ) (24)

where fzk
t,m

(zkt,m|xkt , θ) is the density of measure zkt,m for m = 1, ...,Mk, k ∈ {p,mh, c}. The joint density of

the latent health vector, given last periods latent health vector, intial heterogeneity, previous employment

status, health investments, and θ is fxt
(xt|xt−1, b0, Lt−1, It, θ).

Similarly, the joint density of observed measures at t = 0 is

f(z0|xk0 , θ) =
Mb∏
m=1

fzk
0,m

(zb0,m|b0, θ)
∏

k∈{p,mh,c}

Mk∏
m=1

fzk
0,m

(zk0,m|xk0 , θ), (25)
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where fzk
0,m

(zb0,m|b0, θ) is the density of initial latent heterogeneity measure zb0,m for m = 1, ...,M b
0 . The joint

density of initial endowments, w0 = (xp0, x
mh
0 , xc0, b0) given θ is fw0

(w0).

The likelihood contribution of observed control variables, Lt and It are

fL(Lt|xt, b0, t, θ) = P (Lt = 1|xt, b0, t, θ)1{Lt=1}P (Lt = 0|xt, b0, t, θ)1{Lt=0}

fIj (Ijt|xt, b0, θ) = P (Ijt = 1|xt, b0, t, θ)1{Ijt=1}P (Ijt = 0|xt, b0, t, θ)1{Ijt=0}, for all j ∈ KI

The likelihood contribution for individual i, given parameter values θ can be expressed recursively as

Li(θ) =

∫
· · ·

∫
fw0

(w0)f(z0|xk0 , θ)
Ti∏
t=1

[
fxt

(xt|xt−1, b0, Lt−1, It, θ)
{
1− S(dt = 1|xt, t, b0, θ)

}1−dit

(26)

{
S(dt = 1|xt, b0, t, θ)f(zt|xkt , θ)fL(Lt|t, xt, b0, t, θ)

KI∏
j=1

[
fIj (Ijt|xt, b0, t, θ)

]}dit

]
db0dx0, ..., dxt,

where S(dt = 1|xt, b0, t, θ) is the death probability and Ti is the period where individual i is observed to die.

Initial heterogeneity and the health components are latent and need to be integrated out of the likelihood.

The integrals are taken over the latent initial heterogeneity, b0 and latent health vector xt for all t.
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C Details on Simulated Maximum-Likelihood Estimation (SML)

In our model the observed-data likelihood involves integrating over the entire sequence of latent health

stocks {x1t , x2t , x3t , }t=1...T , and initial heterogeneity, b0. We approximate this high-dimensional integral by

employing Monte Carlo draws from the joint distribution of latent states as dictated by the model. The

distribution of {xpt , xct , xmh
t , b0}t=0...T is jointly normal given the assumptions described in the main text.

The following describes the steps to simulate a time series and calculate the likelihood for a single individual.

1. Simulate Latent Paths: For a given guess of parameters θ, we simulate R independent draws of b̃0 and

paths of the latent states {x̃pt , x̃ct , x̃mh
t , }t=0...T for r = 1, ..., R.

� Initial draw: For each replication r= 1, ..., R, we draw w
(r)
0 = (x̃p0, x̃

c
0, x̃

mh
0 , b̃0)

′ ∼ p(w0|θ), where

w0 = (xp0, x
c
0, x

mh
0 , b0)

′, and evaluate the density fo the initial observable, L0 and z0.

� Forward recursion: for t = 1, ..., T, we update the latent state w
(r)
t = (x̃pt , x̃

c
t , x̃

mh
t , b̃0) using the

transition equation, (6), observed data, and a simulated draw of ν
(r)
t . We compute the conditional

probability of the realized data, Lt, It, zt, given the simulated state, w
(r)
t .

2. Evaluate the Likelihood Contribution of a Path: For each replication r, compute the likelihood of

observing the measures by (26), which we denote as L(r)(θ).

3. Approximate the Likelihood: The true likelihood is then approximated by averaging over the R simu-

lated paths,

L̂obs(θ) ≈
1

R

R∑
r=1

L(r)(θ). (27)

Then for this individual, the log likelihood contribution is lSML(θ) = L̂obs(θ). We maximize the approx-

imated log-likelihood with respect to parameters θ using a combination of Nealder-Meade and the Broy-

den–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

42



D Motivating Framework for the Technology of Health Formation

This section presents a dynamic model to illustrate the many ways individuals’ choices and circumstances

affect, and in turn are affected by their health. We adapt the stylized model presented in Blundell et al.

(2023), expanding the choice set and augmenting the health production technology to depend on individuals

decisions. This exercise aids in guiding the empirical analysis and identification strategy for estimating the

structural parameters of the health formation process.

We model an individual’s decision process before their formal retirement age, T+1. The terminal condition

is post-retirement, where no choices are made and the health stock, among relevant state variables, is taken

as given. At each age, t ∈ {0, ...., T}, individuals choose how much to work and how much of their income

to save, to consume of a regular consumption good, and to consume of a separate “unhealthy” good. The

unhealthy consumption good, such as smoking or drinking, gives positive utility but is a detrimental input

to health formation. Choices for individual i are made to maximize the expected discounted value of their

current and future utility. Health is a stock which affects individuals choices through impacting current

utility, as well as dynamically by determining future health stocks via the health formation process. In what

follows, we consider the problem of a single cohort, so that time and age are interchangeable.

At each age t, individual’s receive utility from consumption and leisure. Utility, given labor supply, Yit,

and stock of health capital Hit, is

U(Cit, Iit;Yit, Hit, ξi, ζit) =
(Cit + αIit)

1−γ

1− γ
− v(Yit, Hit, ξi, ζit), (28)

where Cit is normal good consumption and Iit is unhealthy good consumption. Unhealthy goods are detri-

mental to health production, so in order to rationalize interior solutions there is an additional preference

parameter associated with to unhealthy good consumption, α, as in (Strulik, 2022). The utility cost of work-

ing is additively separable from consumption, which simplifies the solution to the problem and is commonly

made in the related literature (Blundell et al., 2023; De Nardi et al., 2024). The utility cost of work, v(),

depends on the stock of health, reflecting that working is more costly in periods of bad health. The utility

costs of work depends on unobserved tastes heterogeneity, ξi, and idiosyncratic cost shock, ζit.

The individual’s decision problem is subject to several dynamic constraints. First, the budget constraint

summarizes available resources for consumption and savings:

Ait+1 = (1 + rt)(Ait + YitWit(1− τt(YitWit, Hit)) + bt(Hit)− Cit − pIt Iit) (29)
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The budget is determined by the assets available at the start of the period, Ait, potential earnings, Wit, and

benefits that may be available for individuals in bad health, such as disability insurance, bt(Ht). If working,

Yit = 1, employment income is taxed according to the function τ(), which depends on health, capturing

health related tax credits that may be available. The consumption of regular goods, cit is in real terms, and

pIt reflects differences in the real cost of unhealthy goods. The interest rate, rt, determines the per-period

return to savings.

When working, the potential earnings of individual i at age t are

Wit = ω(t,Hit, ϕi, vit). (30)

Potential earnings combine the price and supply of labor and depend on age, approximating the life-cycle

profile of productive human capital accumulation, and vary with the stock of health, representing a disruption

of translating productive human capital into output for those in bad health. Earnings depend on an individual

fixed effect, ϕi, which can be interpreted as heterogeneous productive ability, and vit is an idiosyncratic

transitory earnings shock.

Technology of health formation is described by,

Hit = h(t,Hit−1, Yit−1, Iit, ψi, ϵit). (31)

The formation of health is influenced by individuals’ prior work decisions. At older ages, physically demand-

ing tasks or sustained exposure to stress in the workplace can negatively affect health (Strulik, 2022; Jolivet

and Postel-Vinay, 2020). Conversely, continued labor force participation may have beneficial effects, such

as providing a sense of purpose or preserving cognitive and physical functioning, which is consistent with

evidence that retirement can lead to health deterioration or increased mortality risk (Black et al., 2018).

Lifestyle choices, such as consumption of unhealthy goods like drinking alcohol and smoking cigarettes, also

enter directly into the health production function.

Heterogeneity in health formation is captured by an individual-specific parameter, ψi, reflecting differences

in health productivity. Because health evolves dynamically, early-life endowments and prior choices have

long-term consequences for current health. This heterogeneity, which can be thought of as a “type” in the

health formation process, accounts for differences in health outcomes arising from factors such as initial health

endowments, genetic predispositions, past health shocks, and life-course decisions, including education and

work history (Borella et al., 2024; De Nardi et al., 2024). Finally, health formation is subject to unobserved
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transitory shocks, ϵit, which introduce additional variation over time.

Finally, one’s stock of health determines their expected lifespan. We define the probability that an

individual who is alive at t survives to t+1 as

S(t,Ht). (32)

The individual’s survival probability captures a key tension in the decision problem: working more today

provides more income for consumption today and savings in retirement, but at a utility cost of working and

a costs to future health (affects leisure value in retirement and length of planning horizon).

D.1 Structure of Unobserved Components

The model allows for unobserved heterogeneity in health, earnings, and the preferences for work,

(ϕi, ψi, ξi). We allow for arbitrary correlation between these three dimensions. For example, individuals of

lower socioeconomic status when growing up may have been relatively deprived in investments that foster

good health formation and human capital. Similarly, education may simultaneously impact health produc-

tivity, earnings, and preferences for work. These are distinct from transitory shocks to health, earnings, and

preferences (ζit, vit, ϵit), which are assumed serially uncorrelated, mutually independent, and independent of

unobserved heterogeneity components.

D.2 Individual’s Problem

The solution to the individual’s problem at age t can be represented in the Bellman formulation. For

the set of state variables, Ωit = (t,Hit, Ait, ξi, ϕi, ξi, ζit), the individual’s choices satisfy,

Vt(Ωit) = max
Cit,Iit,Yit

{
U(Cit, Iit, Yit;Hit, ξi, ζit) + βS(t,Hit)EVt+1(Ωit+1)

}
subject to Ait+1 = (1 + rt)(Ait + YitWit(1− τt(YitWit, Hit)) + bt(Hit)− Cit − pIt Iit)

Hit = h(t,Hi,t−1, uit, Yit, ψi, ϵit)

Wit = ω(t,Hit, ϕi, vit).

Consider an interior solution for consumption. Conditional on Yit = y, the first order conditions are

used to derive the optimal policy functions normal good and unhealthy good consumption. The first order
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conditions are

∂

∂C
: UC − β(1 + rt)S(t,Ht)EVA,t+1 = 0 (33)

∂

∂I
: UI − β(1 + rt)S(t,Ht)E(p

I
tVA,t+1 + VH,t+1HI) = 0, (34)

where Vx,t+1 denotes the partial derivative of Vt+1 with respect to x. From equation (33), we obtain the

usual relation between marginal utility of consumption and the discounted marginal value of assets, where

discounting accounts for mortality risk. Then, combining the first order conditions we obtain

UI = pItUc + βS(t,Ht)EVH,t+1HI . (35)

The optimal level of unhealthy good consumption, I∗, is such that the marginal utility of consuming un-

healthy good equates marginal utility of consumption priced at the unhealthy good plus a term capturing

the effect of the unhealthy good on future health times the marginal value of higher health in the future.

Denote Ωy
t+1 as next periods state variables conditional on Yit = y, for y ∈ {0, 1}. Then the decision

rule for employment is

Yit = 1

[
max
Ct,It

{
U(Cit, Iit;Yit = 1, Hit, ξi, ζit) + βS(t,Hit)EVt+1(Ω

1
it+1)

}
(36)

−max
Ct,It

{
U(Cit, Iit;Yit = 0, Hit, ξi, ζit) + βS(t,Hit)EVt+1(Ω

0
it+1)

}
≥ 0

]
. (37)

Denote (Cy
t , I

y
t ) as solutions to equations (33) and (34). Then we can express this using a variable capturing

the latent value working,

Y ∗
t =

(C1
it + αI1it)

1−γ − (C0
it + αI0it)

1−γ

1− γ
− v(Yit, Hit, ξi, ζit) + βS(t,Hit)

(
EVt+1(Ω

1
it+1)− EVt+1(Ω

0
it+1)

)
,

and then optimal policy for employment is

Y ∗
it = 1(Y l

t > 0). (38)
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We can express the policy functions characterizing unhealthy good demand and labor supply as

I∗it = I(Hit,Wit, Ait, t, ξi, ϕi, ψi, ζit|Yit, θ) (39)

Y ∗
it = Y (Hit,Wit, Ait, t, ξi, ϕi, ψi, ζit|θ), (40)

where θ is the set of all parameters in equations (28) - (32). This expression is useful to illustrate the

determinants of health formation. Substituting equations (39) and (40) into equation (41) yields

Hit+1 = H(t,Hit, I
∗
it, Y

∗
it , ψi, ϵit+1), (41)

which clearly illustrates the endogeneity present when estimating (41) using observed data. The unobserved

input to health formation, ψi, is correlated with observed optimal employment and demand for unhealthy

goods. The correlation works through ψi directly and through its covariance with individual preference

heterogeneity, ξi, and heterogeneity in ability, ϕi. Hence, controlling for ψi is needed to obtain unbiased

estimates of the health transition process.

The model implements a uni-dimensional notion of health as the relevant state variable for the individ-

ual’s decisions process. This approach is commonplace in the related literature, using self-reported health

(French, 2005) or combining various measures into a single index (Bound et al., 2010). However, the model

can readily accommodate multidimensional health by specifying H as an aggregator function for an under-

lying set of health components, for instance using a CES technology as in Cunha et al. (2010). The health

components each evolve dynamically according to their own technology process, given state variables, and

the nature of endogeneity arises in a similar way to the stylized model above. The next section considers

the estimation of such a health formation process.
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