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1 Model Parameters

Table 1: Summary of Model Parameters.

Parameter Description

Individual Heterogeneity

ād0 mean of endowed ability distribution
σ2
ad0

variance of endowed ability distribution
ψ̄d0 mean of idiosyncratic cost distribution
σ2
ψd0

variance of idiosyncratic cost distribution

Earnings Process

ϕd0 direct effect of disability on earnings

µd0,s1 return to potential experience

µd0,s2 return to potential experience squared
σ2
ξs,d0

variance of productivity shock distribution

ξ̄0 mean of initial productivity shock distribution
σ2
ξ0

variance of initial productivity shock distribution

hsd0 return to post-secondary

Utility Parameters

β discount factor
κ coefficient of relative risk aversion
θ utility cost of disability
η1 utility cost of working
η2 utility cost of working with a disability
F d cost of working with a disability at old age

Policy Parameters

πs probability of DI acceptance
πSA probability of SA-D acceptance

Cs,d0App utility cost of DI application

Labour Market Environment

δd,st exogenous job destruction rate

λs,dt exogenous job arrival rate

γd0,ti,j disability transition probability
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2 Measuring Disability in the Data

Disability in the model is measured by reported limitations to activities of daily living (LADL). The set of

LADLs is derived from a short version of a module called “the disability screening questions” developed by

Statistics Canada for identifying individuals with disabilities in general population surveys (Grondin, 2016).

This model distinguishes five main areas of activity limitation: Seeing, Hearing, Physical, Cognitive, and

Mental Health. Sample survey questions used to identify disability status in the data are reported in Table

2

Table 2: Survey Questions on Limitations to Daily Activities

Physical limitation

-How much difficulty do you have walking on a flat surface for 15 minutes without resting?

-How much difficulty do you have walking up or down a flight of stairs, about 12 steps without resting?

-How much difficulty do you have reaching in any direction, for example, above your head?

-How much difficulty do you have using your fingers to grasp small objects like a pencil or scissors?

-Do you have pain that is always present?

Cognitive limitation

-Do you think you have a condition that makes it difficult in general for you to learn?

This may include learning disabilities such as dyslexia, hyperactivity, attention problems,

etc..

-Has a teacher, doctor or other health care professional ever said that you had a learning

disability?

-Has a doctor, psychologist or other health care professional ever said that you had a

developmental disability or disorder? This may include Down syndrome, autism, Asperger

syndrome, mental impairment due to lack of oxygen at birth, etc..

-Do you have any ongoing memory problems or periods of confusion? Please exclude

occasional forgetfulness such as not remembering where you put your keys.

Mental Health limitation

-Do you have any emotional, psychological or mental health conditions? These may

include anxiety, depression, bipolar disorder, substance abuse, anorexia, etc..

Sensory Limitation

- How often does this difficulty seeing limit your daily activities?

- How often does this difficulty hearing limit your daily activities?

Note: Provides the disability-related survey questions in LISA used to construct disability status.
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2.1 Validity of Disability Measures

Much research in health economics has focused on the validity of self-reported measures of one’s health.

One concern relates to the inherent subjectivity of how one assesses one’s own health. For example, two

otherwise identical individuals may differ in the reported severity of their disability. Additionally, critics of

self-reported health measures argue that individuals may exaggerate the existence or severity of their health

condition to justify poor economic outcomes or attachment to government programs, a phenomenon referred

to as justification bias. The evidence on the endogeneity of self-reported health measures and the extent of

measurement error are mixed (Black et al., 2017). Although, it is important to note that recent articles tend

to find evidence for state-dependent reporting.1

My disability measure is derived from a respondent reporting any positive limitations to a specified activity

and abstracts from the degree of impairment. This approach mitigates concerns related to subjectivity in

the scale of impairment from a self-reported activity limitation, as I do not distinguish conditions along the

severity margin. Moreover, much of the evidence on justification bias is based on broad questions about one’s

health or disability, such as “do you have a medical or physiological condition that impairs the type or amount

of work you can do.” The questions about activity limitations in this survey are linked to specific tasks,

such as walking on a flat surface for fifteen minutes, grasping a small object like scissors, or experiencing

ongoing memory problems or periods of confusion. Additionally, the presence of some activity limitations is

elicited based on whether the respondent has been diagnosed with a specific condition, such as a learning

or developmental disorder, by a healthcare professional.2 Last, mental health is identified using specific

examples of diagnoses, such as anxiety, depression, bipolar disorder, or anorexia. These approaches narrow

the scope of justification bias to be anchored to the activities in question, base the existence of a limiting

condition on the diagnosis of a medical professional, or frame limitations related to mental health with

specific examples of diagnoses. I follow much of the related literature and take the responses to questions

on limitations to daily activities as given. However, I acknowledge the empirical concerns that are inherent

to any self-reported measures of health.

1It has been found that self-reported disability is close to exogenous, may actually under-represent the extent disabled
population, and may even underestimate the true impact of disability on relevant labour market outcomes (Stern, 1989; Bound
and Burkhauser, 1999; Burkhauser et al., 2002). Others have found evidence of justification bias related to labour market
states inflating the prevalence of health conditions (Beńıtez-Silva et al., 2004; Baker et al., 2004; Black et al., 2017). Moreover,
alternate approaches to identify individuals with disabilities, for instance, by using disability insurance beneficiaries to define
the population with a disability, have been found to under-represent the population of individuals who are limited enough in
the labour market to be classified as “disabled” (Bound, 1989)

2This type of question has been used to assess the validity of self-reported health measures in Baker et al. (2004)
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3 Value Functions and Numerical Solution to Structural Model

There is no analytical solution to the model so it is solved numerically. For a given set of the struc-

tural parameters, the solution algorithm is straightforward, as each period’s decisions and policy functions

are conditional discrete choices. In the following, I suppress the individual’s subscript, i, to simplify nota-

tion. Beginning with the terminal condition in T (retirement at age 65), I iterate backward, numerically

approximating the value functions, characterizing the work decision and Disability Insurance (DI) applica-

tion decision at each age after eighteen as a function of St = {dt, ϵt, et−1, ρt}. Given the solution to the

individual’s labour market decisions, I solve the policy function for the education choice at age eighteen as

a function of initial heterogeneity, {a, d0, ψ}.

Retirement

Solving the model starts with the terminal condition, retirement. The value of the terminal period is

deterministic for a given set of the state variables. I assume that state variables remain fixed as soon as an

individual retires, St = St+1 = S̄ = {d̄, ϵ̄, ē, ρ̄}. Individuals make no decisions in retirement. They receive

utility from consuming their retirement income, which is known with certainty given their earnings index at

the end of their working life.3 I assume individuals expect retirement to last until age 75, after which they

die with certainty. The value of retirement is

V Rt (S̄) = uN (ct; d̄ ) + βV Rt+1(S̄) (1)

= uN (c̄; d̄ ) +

TL∑
τ=1

βτuN (c̄; d̄ ) (2)

s.t. ct = 5500 + 0.25ē. (3)

Before retirement, individuals can find themselves in one of three states in the labour market; working,

not working and receiving SA, or not working and receiving DI. I consider the value functions and timing of

choices for each state in turn, for ages less than 60 when individuals do not have the option to retire.

Value of Working

Given St, employed individuals earn flow utility from consuming after-tax employment income and from

SA at the beginning of the period. Shocks to productivity and disability then update to ϵt+1 and dt+1 and

the earnings index updates given their labour earnings. Individuals then face the job destruction rate, δd0,st ,

which places them out of work in the next period. If their job is not destroyed, individuals may choose to

continue working or leave work. The value function for employed individuals is

V Et (St) = uW (ct; dt) + βEt

[
δd0,st V Ut+1(St+1) + (1− δd0,st )max

{
V Ut+1(St+1), V

E
t+1(St+1)

}]
(4)

s.t. ct = τ
(
WtLt, 0

)
+ SAt(τ

(
WtLt, 0

)
, dt), (5)

et = f(et−1,Wt, t). (6)

3The individual’s contribution period ends at TL so their earnings index remains constant after this time.
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Value of Not Working and Receiving Social Assistance (SA)

While out of work, an individual receives flow utility from consuming SA income. Then, if eligible, they

choose to apply for DI, mt = 1, to become a beneficiary at the beginning of the next period. If applying,

they are accepted with probability πs. If accepted, their disability and productivity shocks update and their

earnings index becomes fixed. If rejected, they do not receive a job offer and remain out of work for the next

period. If the agent does not apply, mt = 0, then their productivity and disability status update, and they

receive a job offer with probability λd0,st . If offered, they choose to accept and enter work the next period or

to reject and remain out of work the next period. If the individual does not receive a job offer, they remain

out of work for the next period. The value function for an unemployed individual at age t is

V Ut (St) = uN (ct; dt) + β Etmax
mt∈{0,1}

[
mt

(
πsV DIt+1(St+1) + (1− πs)V Ut+1(St+1)− Cd0,sapp

)
(7)

+ (1−mt)
(
λd0,st max

{
V Ut+1(St+1), V

E
t+1(St+1)

}
+ (1− λd0,st )V Ut+1(St+1)

)]
(8)

s.t. ct = SA(0, dt), (9)

et = f(et−1, 0, t). (10)

DI Beneficiary

I assume that individuals cannot work when receiving DI but can receive SA benefits simultaneously.

Periods that the individual receives DI are not included in their contribution period. Therefore, their earnings

index does not change when on DI. DI beneficiaries face the risk of reassessment of benefits, ρ. If benefits

are not reassessed, the individual may or may not receive a job offer. If they receive an offer, work is added

to their choice set. The value function for a DI recipient is

V DIt (St) = uN (ct; dt) + βEt

[
(1− λd0,st )max{V U (St+1), V

DI(St+1)} (11)

+ λd0,st max{V E(St+1), V
U (St+1), V

DI(St+1)}
]

(12)

s.t. ct = τ
(
0, DIt

)
+ SAt(τ

(
0, DIt,

)
, dt) (13)

et = et−1. (14)

In each period t, for every possible combination of the discrete state variables—both those that are

time-varying and those that are fixed—I evaluate the continuation value (Emax) on a discretized grid of the

continuous state variables. The continuous state variables are initially (ai, ϵit, ei,t−1), where ai is endowed

ability, ϵit is the accumulated productivity shock, and ei,t−1 is the earnings index. Because ai and ϵit only

affect future earnings, I can reduce the problem to tracking (Wit, ei,t−1) where Wit is the current earnings.

To compute the expected continuation value, I integrate out the next period’s productivity shock, ξs,d0it+1 .

Assuming this shock is normally distributed, I use Gauss–Hermite quadrature to numerically approximate the

integral over its distribution. For each realization of the discrete state variables, I construct an approximation

of the continuation value by evaluating the expected payoff on a discrete grid for (Wit, ei,t−1). Finally, to

handle points that lie between the grid values in the continuous space, I apply bilinear interpolation. This
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approach ensures a smooth approximation of the continuation value function while keeping the computational

burden tractable.

3.1 Smoothing

Applying indirect inference to a discrete choice model presents challenges due to the discontinuous

nature of the mapping from structural parameters to simulated data. Small changes in the structural

parameters can lead to abrupt shifts in the simulated outcomes, causing the auxiliary model’s parameter

estimates to change discontinuously. These discrete jumps introduce discontinuities in the objective function,

complicating optimization. Additionally, some parameter changes may not affect the discrete choices at all,

resulting in flat regions in the objective function.

To address these issues, I adopt a Generalized Indirect Inference (GII) procedure, which smooths

the objective function and mitigates both flat spots and discontinuities (Bruins et al., 2018), (Keane and

Smith, 2003). The key idea is to apply distinct auxiliary models to the simulated and observed data. In

particular, the auxiliary model for the simulated data is designed to fit the continuous latent variables that

underlie the observed discrete outcomes. Provided that both auxiliary models yield asymptotically equivalent

vectors of pseudo-true parameters, the GII estimator—defined by minimizing the distance between the two

models—remains consistent and asymptotically normal.

To implement GII, I introduce an i.i.d. taste shock, ζkt = (ζEt , ζ
U
t , ζ

DI
t ), into the utility associated with

each labor market state. These shocks are interpreted structurally as unobserved state variables known to

the agents but not to the econometrician. The shocks follow a multivariate extreme value distribution with

scale parameter λ. Their inclusion necessitates modifications to both the model’s solution method and the

estimation algorithm.

In solving the model, I follow a similar procedure as previously described, with the key distinction that

I now account for the newly introduced state variables when computing the expected maximum (Emax)

functions within the continuation values at each decision point. To illustrate, the value function for the

employed state becomes:

V Et (St) = uW (ct; dt) + λζEt + βEt

[
δd0,st (V Ut+1(St+1) + λζUt+1) (15)

+ (1− δd0,st )max
{
V Ut+1(St+1) + λζUt+1, V

E
t+1(St+1) + λζEt+1

}]
(16)

V Et (St) = uW (ct; dt) + λζEt + β

[
δd0,st Et(V

U
t+1(St+1) + λζUt+1) (17)

+ (1− δd0,st ) LS
k∈E,U

(
V Ut+1(St+1), V

E
t+1(St+1)

)]
(18)

where LS is the log-sum function

LS
k∈E,U

(
V Ut+1(St+1), V

E
t+1(St+1)

)
= λlog

(
exp(V Ut+1(St+1)/λ) + exp(V Et+1(St+1)/λ)

)
. (19)
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Now, the conditional choice probability of each labor market state at period t is given by,

Pr(V = V jt |St) =
exp(V jt /λ)

exp(V Ut /λ) + exp(V Et /λ)
(20)

The estimation procedure for the model with taste shocks follows similar steps as before, with one

key modification: moments in the auxiliary model are now calculated using choice probabilities rather than

observed outcomes. For example, the auxiliary model includes conditional employment rates computed from

the observed data. I estimate the model’s parameters by matching these observed rates to the corresponding

conditional employment probabilities generated by the simulated model. The fundamental principle of

Generalized Indirect Inference (GII) is that the estimation procedures applied to the observed and simulated

data need not be identical, so long as both yield consistent estimates of the same vector of pseudo-true

parameter values.

4 Censoring

The data used in the analysis is an unbalanced panel, as such there is considerable censorship present

when calculating the moments making up the auxillary model for estimation. To address this, I replicate

censoring observed in the data and impose it when calculating the moments using data simulated from the

model. I calculate the probability of an observation being censored conditional on age, a lag for censorship

in the previous period (L.1), censorship in the previous two periods (L.2), and censorship in the previous

three periods (L.3). I estimate a separate linear probability model conditional on d0 and s, giving four sets

of estimates. The results from the estimation are reported in Table 3 below.

Table 3: Censoring

Not Early Early
Low Educ PS Low Educ PS

age -0.001 0 0 -0.001
(0) (0) (0) (0)

L.1 0.358 0.384 0.333 0.302
(0.021) (0.014) (0.065) (0.05)

L.2 0.154 0.137 0.122 0.183
(0.041) (0.027) (0.127) (0.103)

L.3 0.142 0.159 0.228 0.214
(0.043) (0.028) (0.138) (0.108)

Intercept 0.059 0.039 0.046 0.079
(0.005) (0.003) (0.016) (0.012)

Note: Reports point estimates used to construct probabilities of censoring in the panel data across disability and education
subgroups, accounting for lag structures. Standard errors of estimates reported in brackets below point estimates.
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5 Descriptive Statistics

Table 4: Likelihood of Post-Secondary Attainment by Early Disability Status

Data

Early-Onset 0.460
(0.037)

Not Early Disabled 0.640
(0.012)

Notes: Survey weights applied to LISA data to represent the of Canada population in 2012. Post-secondary education equals
one if the individuals has completed any post-secondary, which includes college certificates, university degrees below a bachelors,
a bachelors degree, and degrees above a bachelors. Individuals who complete high school or drop out are grouped into the low
schooling category. Standard errors are reported in parenthesis below.

Table 4 shows that the likelihood of completing post-secondary is 18 percentage-points lower for early-

onset individuals. Less than half of individuals affected by an early-onset disability complete a post-secondary

degree.

Table 5: Employment and Earnings by Education Level and Early Disability Status.

Not Early Disabled Early-Onset
Low Education Post-Secondary Low Education Post-Secondary

All Years in Labour Market

Annual Earnings($) 32300 50900 26000 40400
(21300) (31600) (19900) (27400)

Employment Rate 0.740 0.846 0.508 0.753

First 3 years in Labour Market

Annual Earnings ($) 15100 20700 12900 18200
(10800) (14300) (10000) (13300)

Employment Rate 0.810 0.862 0.579 0.815

Notes: Estimates are from T1FF years 1989-2016 and survey weights applied to represent the of Canada population in 2012.
Standard deviations are reported in parenthesis below.

Table 5 presents statistics on lifetime earnings and employment by early disability status and education

level. Individuals with early-onset disabilities and low education who are employed earn approximately 20%

less than their counterparts without early-onset disabilities, increasing their risk of applying for Social Insur-

ance (SI). These lower returns to work are reflected in significantly reduced lifetime employment rates—23
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percentage points lower than those of similarly educated individuals without early disabilities. The third

and fourth rows of Table 5 report average earnings and employment in the first three years following labor

market entry. The observed differences by early disability status within the low education group are smaller

in this early period, suggesting that early-onset disabilities may hinder the accumulation of skills over time.

Among those with post-secondary education, the earnings gap by early disability status is comparable in

magnitude to that observed in the low education group. Early-onset individuals with post-secondary educa-

tion earn about 20% less than their non-disabled peers, potentially reflecting lower average ability, reduced

financial returns to education, or both. However, their average employment rates are much closer to those

of non-disabled individuals, indicating relatively higher returns to work within this subgroup.

Table 6: Average Rate and Transfer Amount From Social Assistance (SA) and Disability Insurance (DI) by
Education Level and Early Disability Status

Not Early Disabled Early-Onset
Low Education Post-Secondary Low Education Post-Secondary

SA Rate
Age < 45 0.0773 0.0252 0.3702 0.0772

(0.003) (0.001) (0.014) (0.006)
Age ≥ 45 0.0785 0.0262 0.2963 0.1309

(0.003) (0.001) (0.019) (0.013)

Average Transfer from SA
Age < 45 6100 5600 8200 6800

(100) (200) (200) (300)
Age ≥ 45 7200 6600 8700 6100

(100) (200) (300) (300)

All Labour Market Years
DI Rate 0.0238 0.0085 0.0396 0.0407

(0.001) (0.000) (0.005) (0.004)

Average Transfer from DI 9100 9300 7600 7800
(100) (100) ( 200) (200)

Notes: Estimates are from T1FF years 1989-2016 and survey weights applied to represent the of Canada population in 2012.
Standard deviations are reported in parenthesis below.

Table 6 presents statistics on the likelihood of receiving transfers and the average benefit amounts

from Disability Insurance (DI) and Social Assistance (SA), disaggregated by early disability status and

education level. The first two rows indicate that individuals with early-onset disabilities are substantially

more likely to receive SA benefits early in life and, on average, receive larger transfers. Across all education

levels, the proportion of individuals who ever become SA recipients is more than double for the early-onset

group. Notably, over 30% of early-onset individuals with low education depend on SA at some point dur-
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ing their lives. Rows 3 and 4 show that the difference in average SA benefits received between early-onset

and non-disabled individuals decreases with education. Early-onset individuals with low education receive

approximately $2,000 more per year in SA benefits, compared to a difference of around $800 for those with

post-secondary education

Rows 5 and 6 report that the likelihood of receiving Canada Pension Plan Disability (CPP-D) benefits

is relatively low, with approximately 4% of early-onset individuals eventually becoming beneficiaries. It is

important to interpret this figure as representing only those who both applied for and were accepted into the

CPP-D program. In practice, many more individuals may apply but are denied; for instance, in 2014–2015,

only 43% of CPP-D applications were approved (Office of the Auditor General of Canada, 2015). Lastly, the

average size of DI benefits increases with age, reflecting growth in lifetime earnings.

6 Model Policy Environment

6.1 Tax Environment

Parameters for the income tax brackets and marginal tax rates were derived from the Canadian Tax and

Transfer Simulator (Milligan, 2016). In each province and calendar year, I cap the upper threshold to tax

brackets to give me 5 distinct tax brackets. I then calculate the economy’s average income brackets and

marginal tax rates across all years and provinces in the support of my data. I each province-year tax regime

based on the joint density of calendar year and province in my sample. Table 7 reports the resulting tax

system used in the model.

Table 7: Tax Brackets and Marginal Tax Rates.

Income Bracket Tax Rate

[0, 30805] 0.2280
[30805, 46586] 0.2944
[46586, 64178] 0.3433
[64178, 68066] 0.3621
[68066, ∞] 0.3833

Shows the tax schedule implemented in the model based on bracketed income thresholds and associated rates. Tax rates and
income brackets derived using parameters of the Canadian Tax and Transfer Simulator (Milligan, 2016).

6.2 Social Assistance Regimes

In Canada, SA policies vary across provinces and over calendar time. For each province and each

time period, I represent the SA policy as a two-element “couplet” showing the maximum benefit available

under SA and under SA-D. Given 10 provinces observed over 29 periods, this yields 290 distinct couplets.

Accommodating three hundred different SA policies is computationally intractable. To simplify, I group

“similar” couplets using a k-means clustering algorithm (Hartigan–Wong), which clusters observations based
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on Euclidean distances (Hartigan and Wong, 1979). The algorithm partitions the 290 couplets into clusters

by minimizing the sum of squared distances between points and their assigned cluster centers.

Hartigan–Wong algorithm proceeds by trying to place each data point into the “best” cluster, which

loosely translates to minimizing the overall within-cluster variance (the total euclidean distance of points to

their cluster centers). Given a set of data points (290 two-dimensional “couplets” in my application). I also

decide on a number of clusters k=2. The algorithm begins by assigning each point to one of k clusters in

some initial way (often randomly). After the initial grouping, the algorithm checks whether moving each

point it from its current cluster to a different cluster would reduce the overall distance within all clusters. If

it finds that moving a point to a different cluster yields a lower overall sum of squared distances, it makes

that move. Each time a point is reassigned, the center (mean) of both the old cluster and the new cluster is

updated to reflect the change. The algorithm continues through the points and reassigning them whenever a

beneficial move is found. Once no further improvements can be found (in terms of reducing overall distance),

the algorithm has converged.

Figure 1: SA Regimes and Clusters by Province and Year

Note: Graph illustrates the k-means clustering of social assistance policies across province-time pairs. The generosity of regular
SA-D is reported on the horizontal axis and generosity of SA on the vertical axis. Each point represents a province-year SA
regime. Regimes are grouped into low generosity (circles) and high generosity (triangles) regimes.

Figure 1 illustrates these clusters: each point corresponds to a province–time couplet, shaded regions

show which couplets are grouped together, and each black dot marks the cluster center (a weighted average

of its members). The cluster centers are the SA regimes used in the model. I choose two clusters: one

representing less generous SA policies and another representing more generous ones.

7 Estimation of search frictions

To calculate job arrival rates, I first estimate parameters estimates from the following probit model:

UEi = γs,d00 + γs,d01 LSi + γs,d02 agei + LSi ∗ ageiγs,d03 + ϵi, (21)
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where the dependent variable, UEi is an indicator equal to one if an i is employed (part-time or full-time).

The variable LSi indicates whether the individual was actively searching for a job in the previous month.

Probit regressions are estimated separately by schooling level (s) and early-onset disability status (d0). Using

the estimated coefficients, I calculate the marginal effect of job search on employment probability across age

and convert monthly arrival rates into annual equivalents.

To calculate job destruction rate, I first obtain parameter estimates from the following model,

EUi = βs,d00 + βsd01 agei + ϵi. (22)

where the dependent variable, EUi, equals one if the individual was fired or laid off since the last survey

wave. As before, the model is estimated separately by s and d0, and I use the resulting estimates to predict

age-specific separation probabilities.

Table 8: Models for Job Arrival Rate and Destruction Rate

d0s0 d0s1 d1s0 d1s1

LS -0.728 -1.001 -0.619 -0.578
(0.104) (0.107) (0.233) (0.301)

age -0.001 -0.006 -0.006 -0.011
(0) (0) (0.001) (0.001)

LS*age -0.014 -0.012 -0.017 -0.02
(0.003) (0.002) (0.009) (0.008)

Intercept 0.082 0.507 -0.128 0.527
(0.01) (0.01) (0.026) (0.033)

age -0.006 -0.011 -0.031 -0.016
(0.003) (0.003) (0.008) (0.009)

Intercept -0.958 -0.984 -0.129 -0.514
(0.137) (0.12) (0.277) (0.358)

Note: Table provides estimated coefficients from probit models of job arrival and separation, by education level and disability
status. Standard errors are reported in brackets below point estimates.

Table 8 presents the estimates from estimating (17) and (18). The estimation results indicate that indi-

viduals with post-secondary education (s = 1) receive job offers at a higher rate. Conditional on schooling,

individuals with early-onset disabilities are less likely to receive job offers—consistent with employer percep-

tions of lower productivity, higher accommodation costs, or bias against hiring individuals with disabilities

(Dixon et al., 2003). In contrast, job separation rates are lower for individuals with higher education and

higher for those with early-onset disabilities, conditional on education. This aligns with the interpretation

that more stable, permanent jobs are available to individuals with post-secondary credentials.
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8 Description of Decomposition

I follow the framework of Shorrocks et al. (2013) in decomposing the education gap into its contributing

components. Consider a statistical indicator, I, which can be fully expressed as a function of m contributory

factors,

I = f(X1, ..., Xm). (23)

In this application, I is the education differential between individuals with and without an early onset

disability. The contributing factors, Xm, are sets of structural parameters that differ by initial disability

status, and the function f is the mapping from the structural model to the education differential. Let F (S)

be the value of I when a set of factors Xk, k /∈ S, have been shut off. A decomposition of the model structure

{K,F} is defined as a set of real values Ck, k ∈ K, representing the contribution of each factor. That is, the

contribution of a factor corresponds to the change in I when that factor was shut off. A decomposition rule

is a function that generates these factor contributions:

Ck = Ck(K,F ) (24)

The first decomposition I implement calculates the marginal impact on the education gap when shutting

down a single factor, with all other factors on. This is given by:

Ck(K,F ) = F (K)− F (K/{k}), k ∈ K (25)

This decomposition represents the ceteris paribus effect of each contributing factor on the gap, holding all

other model features constant. However, the individual contributions derived from this method do not, in

general, sum to reproduce the entire baseline education gap.

As an alternative, I employ the Shapley decomposition, which ensures that the sum of the factor

contributions equals the total baseline gap. The Shapley decomposition is calculated based on calculating

the marginal impact of each factor across all m! possible ordered sequences in which the factors could be

eliminated:

Cj =

n−1∑
k−0

(n− k − 1)!k!

n!

( ∑
s⊂Sk/{Xj}:|s|=k

[
f(s ∪Xj)− f(s)

])
(26)

where n is the total number of arguments in the original function, and Sk/{Xj} is the set of all “submodels”

of size k that exclude factor Xj . The weighting term, (n−k−1)!k!
n! reflects the probability that a particular

submodel of size k is randomly selected under uniform permutation.

The Shapley decomposition has three desirable properties. First, it is exact—the contributions of all factors

sum to match the total education gap. Second, it satisfies symmetry: if two factors have identical marginal

effects across all permutations, their contributions will be equal. This property ensures path independence

in the estimation of each factor’s contribution.4 Third, the method accommodates hierarchical structures,

allowing for decomposition into both primary and secondary contributing factors.

4In contrast, sequential shutdown methods can be path-dependent.
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9 Auxiliary Model and Fit of Moments

Tables 9 - 19 display the full set of auxiliary moments used in estimation. Each table reports the moments

calculated in the observed data, the moments calculated using data simulated with the model, and the

standard error of the observed data moment. Estimation consists of 217 moments, including education

rates and regressions (Table 9), coefficients from DI rate and DI flow regressions (Tables 10, 11, and 12),

employment rates, flows, and regressions (Tables 13 and 14), and earnings distributions and regressions

(Tables 15, 16, 17, 18, and and 19).

Table 9: Education Rates and Regressions

Moment Data Simulation Standard Error .

Education Rate

Frac(s = 1|d0 = 1) 0.466 0.457 0.037
Frac(s = 1|d0 = 0) 0.658 0.638 0.012

Linear Probability Models

d0 -0.125 -0.094 0.033
v̂ 0.146 0.254 0.015
Intercept -0.673 -1.736 0.143
σ2
ψ 0.214 0.220 0.003

d0 -0.894 1.058 0.384
v̂ 0.136 0.336 0.016
pr × v̂ 0.085 -0.125 0.042
Intercept -0.584 -2.499 0.154
σ2
ψ 0.213 0.219 0.003

Conditional Linear Probability Models

Conditional on d0 = 0
pr -0.886 -0.215 0.307
v̂ 0.098 0.326 0.022
pr × v̂ 0.094 0.014 0.033
Intercept -0.230 -2.359 0.201
σ2
ψ 0.211 0.206 0.004

Conditional on d0 = 1
pr -1.131 -0.183 0.737
v̂ 0.169 0.205 0.049
pr × v̂ 0.121 0.009 0.081
Intercept -0.989 -1.330 0.450
σ2
ψ 0.224 0.228 0.009
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Table 10: OLS Regression Coefficients: DI Rate

Moment Data Simulation Standard Error

d0 = 0, s = 0
age 0.007 0.011 0.002
age2 0.000 0.000 0.000
age3 0.000 0.000 0.000
Intercept -0.063 -0.105 0.027

d0 = 0, s = 1
age 0.006 0.005 0.002
age2 0.000 0.000 0.000
age3 0.000 0.000 0.000
Intercept -0.068 -0.053 0.018

d0 = 1, s = 0
age 0.021 0.016 0.014
age2 -0.001 -0.001 0.000
age3 0.000 0.000 0.000
Intercept -0.193 -0.141 0.153

d0 = 1, s = 1
age -0.003 0.006 0.014
age2 0.000 0.000 0.000
age3 0.000 0.000 0.000
Intercept 0.038 -0.045 0.167
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Table 11: OLS Regression Coefficients: DI Flow

Moment Data Simulation Standard Error

d0 = 0, s = 0
age -0.002 0.000 0.001
age2 0.000 0.000 0.000
age3 0.000 0.000 0.000
Intercept 0.027 0.007 0.010

d0 = 0, s = 1
age 0.001 0.001 0.001
age2 0.000 0.000 0.000
age3 0.000 0.000 0.000
Intercept -0.007 -0.013 0.008

d0 = 1, s = 0
age -0.004 -0.008 0.004
age2 0.000 0.000 0.000
age3 0.000 0.000 0.000
Intercept 0.045 0.106 0.042

d0 = 1, s = 1
age 0.005 -0.006 0.006
age2 0.000 0.000 0.000
age3 0.000 0.000 0.000
Intercept -0.058 0.069 0.070

Table 12: OLS Regression Coefficients: Pre-DI Ln(Average Earnings) and Employment

Moment Data Simulation Standard Error

Dependent Variable : Ln(Average Earnings)

d0 -0.119 -0.216 0.300
s 0.209 -0.038 0.106
s× d0 -0.316 0.348 0.390
intercept 10.141 9.795 0.074

Dependent Variable: Average Employment
d0 -0.280 -0.407 0.173
s 0.104 0.169 0.059
s× d0 0.034 0.153 0.213
intercept 0.706 0.583 0.044

Notes: dependent Variables are calculated as the average over the 5 periods prior to applying for DI.
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Table 13: Conditional Employment Rates and Flows

Moment Data Simulation Standard Error

Employment Rates
Fr(Lit = 1|d0 = 0, d∗it = 0, si = 0, t < 45) 0.874 0.785 0.003
Fr(Lit = 1|d0 = 0, d∗it = 0, si = 0, t ≥ 45) 0.797 0.773 0.004
Fr(Lit = 1|d0 = 0, d∗it = 0, si = 1, t < 45) 0.908 0.879 0.002
Fr(Lit = 1|d0 = 0, d∗it = 0, si = 1, t ≥ 45) 0.850 0.892 0.003

Fr(Lit = 1|d0 = 0, d∗it = 1, si = 0, t < 45) 0.670 0.819 0.015
Fr(Lit = 1|d0 = 0, d∗it = 1, si = 0, t ≥ 45) 0.479 0.678 0.009
Fr(Lit = 1|d0 = 0, d∗it = 1, si = 1, t < 45) 0.831 0.892 0.008
Fr(Lit = 1|d0 = 0, d∗it = 1, si = 1, t ≥ 45) 0.638 0.863 0.007

Fr(Lit = 1|d0 = 1, d∗it = 1, si = 0, t < 45) 0.521 0.507 0.014
Fr(Lit = 1|d0 = 1, d∗it = 1, si = 0, t ≥ 45) 0.480 0.425 0.020
Fr(Lit = 1|d0 = 1, d∗it = 1, si = 1, t < 45) 0.815 0.754 0.009
Fr(Lit = 1|d0 = 1, d∗it = 1, si = 1, t ≥ 45) 0.611 0.655 0.018

Employment Transition Rates
Fr(Lit = 0|Lit = 1, di0 = 0, si = 0, t < 45) 0.046 0.123 0.002
Fr(Lit = 0|Lit = 1, di0 = 0, si = 0, t ≥ 45) 0.040 0.089 0.002
Fr(Lit = 0|Lit = 1, di0 = 0, si = 1, t < 45) 0.037 0.076 0.001
Fr(Lit = 0|Lit = 1, di0 = 0, si = 1, t ≥ 45) 0.039 0.060 0.001

Fr(Lit = 1|Lit = 0, di0 = 0, si = 0, t < 45) 0.050 0.132 0.002
Fr(Lit = 1|Lit = 0, di0 = 0, si = 0, t ≥ 45) 0.028 0.074 0.002
Fr(Lit = 1|Lit = 0, di0 = 0, si = 1, t < 45) 0.047 0.113 0.001
Fr(Lit = 1|Lit = 0, di0 = 0, si = 1, t ≥ 45) 0.024 0.053 0.001

Fr(Lit = 0|Lit = 1, di0 = 1, si = 0, t < 45) 0.080 0.139 0.007
Fr(Lit = 0|Lit = 1, di0 = 1, si = 0, t ≥ 45) 0.029 0.049 0.006
Fr(Lit = 0|Lit = 1, di0 = 1, si = 1, t < 45) 0.050 0.127 0.005
Fr(Lit = 0|Lit = 1, di0 = 1, si = 1, t ≥ 45) 0.045 0.081 0.008

Fr(Lit = 1|Lit = 0, di0 = 1, si = 0, t < 45) 0.067 0.150 0.007
Fr(Lit = 1|Lit = 0, di0 = 1, si = 0, t ≥ 45) 0.019 0.035 0.005
Fr(Lit = 1|Lit = 0, di0 = 1, si = 1, t < 45) 0.058 0.162 0.005
Fr(Lit = 1|Lit = 0, di0 = 1, si = 1, t ≥ 45) 0.027 0.061 0.005

Employment Rate at Labour Market Entry
Fr(Lit = 1|di0 = 0, si = 0, t = 1) 0.809 0.648 0.009
Fr(Lit = 1|di0 = 0, si = 1, t = 4) 0.862 0.822 0.006
Fr(Lit = 1|di0 = 1, si = 0, t = 1) 0.579 0.363 0.028
Fr(Lit = 1|di0 = 1, si = 1, t = 4) 0.815 0.552 0.022
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Table 14: OLS Regression Coefficients: Employment

Moment Data Simulation Standard Error

d0 = 0, s = 0
age -0.034 0.040 0.007
age2/100 0.001 0.000 0.000
age3/100 0.000 0.000 0.000
d∗ -0.263 -0.019 0.009
pr -0.026 -0.073 0.005
intercept 1.157 0.107 0.084

d0 = 0, s = 1
age -0.077 0.001 0.006
age2/100 0.002 0.000 0.000
age3/100 0.000 0.000 0.000
d∗ -0.140 -0.006 0.006
pr -0.018 -0.025 0.003
intercept 1.723 0.750 0.074

d0 = 1, s = 0
age -0.043 0.042 0.029
age2/100 0.001 0.000 0.001
age3/100 0.000 0.000 0.000
pr -0.130 -0.080 0.022
intercept 1.205 -0.261 0.338

d0 = 1, s = 1
age 0.043 0.034 0.031
age2/100 -0.001 0.000 0.001
age3/100 0.000 0.000 0.000
pr -0.109 -0.033 0.016
intercept 0.338 -0.137 0.383
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Table 15: Annual Earnings Distribution

Moment Data Simulation Standard Error

Mean of Annual Earnings Over All Years
E(W |d0 = 0, s = 0) 32300.000 36151.366 100.000
E(W |d0 = 0, s = 1) 50900.000 51881.700 100.000
E(W |d0 = 1, s = 0) 26000.000 29658.624 500.000
E(W |d0 = 1, s = 1) 40400.000 47926.220 600.000

Mean of Annual Earnings in First Three Years of Labour Market
E(LnW |s = 0, d0 = 0, 1 ≤ t ≤ 3) 9.390 9.406 0.018
E(LnW |s = 1, d0 = 0, 4 ≤ t ≤ 6) 9.700 9.712 0.012
E(LnW |s = 0, d0 = 1, 1 ≤ t ≤ 3) 9.200 9.167 0.052
E(LnW |s = 1, d0 = 1, 4 ≤ t ≤ 6) 9.530 9.606 0.047

Variance of Initial Earnings
V ar(LnW |s = 0, d0 = 0, 1 ≤ t ≤ 3) 0.486 0.032 0.015
V ar(LnW |s = 1, d0 = 0, 4 ≤ t ≤ 6) 0.526 0.033 0.010
V ar(LnW |s = 0, d0 = 1, 1 ≤ t ≤ 3) 0.532 0.316 0.036
V ar(LnW |s = 1, d0 = 1, 4 ≤ t ≤ 6) 0.618 0.224 0.039
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Table 16: Annual Earnings Quantiles

Moment Data Simulation Standard Error

d0 = 0, s = 0
Q10 9.148 9.518 0.014
Q25 9.857 9.833 0.009
Q50 10.389 10.253 0.005
Q75 10.771 10.708 0.004
Q90 11.060 11.126 0.004

d0 = 0, s = 1
Q10 9.525 9.805 0.011
Q25 10.240 10.185 0.006
Q50 10.751 10.652 0.003
Q75 11.126 11.115 0.003
Q90 11.416 11.509 0.004

d0 = 1, s = 0
Q10 8.556 9.193 0.072
Q25 9.278 9.638 0.044
Q50 9.971 10.035 0.030
Q75 10.454 10.488 0.022
Q90 10.919 10.950 0.032

d0 = 1, s = 1
Q10 9.127 9.751 0.062
Q25 9.868 10.103 0.033
Q50 10.494 10.552 0.023
Q75 10.910 11.034 0.017
Q90 11.242 11.451 0.018
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Table 17: OLS Regression Coefficients: Annual Earnings

Moment Data Simulation Standard Error

d0 = 0, s = 0
age 0.123 0.155 0.003
age2/100 -0.001 -0.002 0.000
d∗ -0.129 0.006 0.017
Intercept 7.625 7.051 0.051

d0 = 0, s = 1
age 0.172 0.214 0.002
age2/100 -0.002 -0.002 0.000
d∗ -0.120 -0.001 0.011
Intercept 6.859 6.033 0.044

d0 = 1, s = 0
age 0.096 0.086 0.011
age2/100 -0.001 -0.001 0.000
Intercept 7.713 7.858 0.197

d0 = 1, s = 1
age 0.190 0.197 0.012
age2/100 -0.002 -0.002 0.000
Intercept 6.331 6.254 0.221
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Table 18: First-Difference Regression on Annual Earnings

Moment Data Simulation Standard Error

d0 = 0, s = 0
potential experience 0.110 0.112 0.006
potential experience2/100 -0.204 -0.213 0.012
E(v|s = 0, d0 = 0) 9.037 9.156 0.017
V ar(v|s = 0, d0 = 0) 0.345 0.192 0.014
V ar(ξ|s = 0, d0 = 0) 0.209 0.099 0.004
Cov(ϵt, ϵt−1|s = 0, d0 = 0) 0.087 0.085 0.002
Cov(ϵt, ϵt−2|s = 0, d0 = 0) 0.053 0.075 0.002

d0 = 0, s = 1
potential experience 0.145 0.126 0.004
potential experience2/100 -0.285 -0.244 0.010
E(v|s = 1, d0 = 0) 9.211 9.447 0.013
V ar(v|s = 1, d0 = 0) 0.364 0.181 0.014
V ar(ξ|s = 1, d0 = 0) 0.230 0.090 0.003
Cov(ϵt, ϵt−1|s = 1, d0 = 1) 0.109 0.078 0.002
Cov(ϵt, ϵt−2|s = 1, d0 = 1) 0.067 0.068 0.001

d0 = 1, s = 0
potential experience 0.104 0.082 0.027
potential experience2/100 -0.197 -0.142 0.064
E(v|s = 0, d0 = 1) 8.761 8.830 0.061
V ar(v|s = 0, d0 = 1) 0.471 0.398 0.053
V ar(ξ|s = 0, d0 = 1) 0.255 0.095 0.017
Cov(ϵt, ϵt−1|s = 0, d0 = 0) 0.098 0.073 0.011
Cov(ϵt, ϵt−2|s = 0, d0 = 0) 0.074 0.063 0.012

d0 = 1, s = 1
potential experience 0.133 0.144 0.018
potential experience2/100 -0.323 -0.295 0.036
E(v|s = 1, , d0 = 1) 9.245 9.158 0.053
V ar(v|s = 1, d0 = 1) 0.388 0.313 0.044
V ar(ξ|s = 1, d0 = 1) 0.263 0.061 0.015
Cov(ϵt, ϵt−1|s = 1, d0 = 1) 0.127 0.050 0.009
Cov(ϵt, ϵt−2|s = 1, d0 = 1) 0.075 0.044 0.008
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Table 19: Fixed Effect Quantiles

Moment Data Simulation Standard Error

d0 = 0, s = 0
Q10 8.182 8.609 0.025
Q25 8.655 8.834 0.016
Q50 9.094 9.116 0.014
Q75 9.457 9.446 0.012
Q90 9.776 9.756 0.016

d0 = 0, s = 1
Q10 8.390 8.892 0.019
Q25 8.816 9.145 0.012
Q50 9.236 9.443 0.010
Q75 9.579 9.763 0.010
Q90 9.892 10.022 0.012

d0 = 1, s = 0
Q10 7.953 8.033 0.084
Q25 8.396 8.423 0.049
Q50 8.825 8.816 0.045
Q75 9.329 9.232 0.054
Q90 9.716 9.648 0.049

d0 = 1, s = 1
Q10 8.386 8.438 0.085
Q25 8.861 8.760 0.057
Q50 9.292 9.149 0.059
Q75 9.700 9.565 0.043
Q90 10.002 9.894 0.080
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